Sum Chan
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sum Chan.
Nature Methods | 2016
Noah D. Taylor; Alexander S. Garruss; Rocco Moretti; Sum Chan; Mark A. Arbing; Duilio Cascio; Jameson K. Rogers; Farren J. Isaacs; Sriram Kosuri; David Baker; Stanley Fields; George M. Church; Srivatsan Raman
Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.
Biophysical Chemistry | 2003
Celia W. Goulding; L. Jeanne Perry; Daniel H. Anderson; Michael R. Sawaya; Duilio Cascio; Marcin I. Apostol; Sum Chan; Angineh Parseghian; Shuishu Wang; Yim Wu; Vicente Cassano; Harindarpal S. Gill; David Eisenberg
The growing list of fully sequenced genomes, combined with innovations in the fields of structural biology and bioinformatics, provides a synergy for the discovery of new drug targets. With this background, the TB Structural Genomics Consortium has been formed. This international consortium is comprised of laboratories from 31 universities and institutes in 13 countries. The goal of the consortium is to determine the structures of over 400 potential drug targets from the genome of Mycobacterium tuberculosis and analyze their structures in the context of functional information. We summarize the efforts of the UCLA consortium members. Potential drug targets were selected using a variety of bioinformatics methods and screened for certain physical and species-specific properties to yield a starting group of protein targets for structure determination. Target determination methods include protein phylogenetic profiles and Rosetta Stone methods, and the use of related biochemical pathways to select genes linked to essential prokaryotic genes. Criteria imposed on target selection included potential protein solubility, protein or domain size, and targets that lack homologs in eukaryotic organisms. In addition, some protein targets were chosen that are specific to M. tuberculosis, such as PE and PPE domains. Thus far, the UCLA group has cloned 263 targets, expressed 171 proteins and purified 40 proteins, which are currently in crystallization trials. Our efforts have yielded 13 crystals and eight structures. Seven structures are summarized here. Four of the structures are secreted proteins: antigen 85B; MPT 63, which is one of the three major secreted proteins of M. tuberculosis; a thioredoxin derivative Rv2878c; and potentially secreted glutamate synthetase. We also report the structures of three proteins that are potentially essential to the survival of M. tuberculosis: a protein involved in the folate biosynthetic pathway (Rv3607c); a protein involved in the biosynthesis of vitamin B5 (Rv3602c); and a pyrophosphatase, Rv2697c. Our approach to the M. tuberculosis structural genomics project will yield information for drug design and vaccine production against tuberculosis. In addition, this study will provide further insights into the mechanisms of mycobacterial pathogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Mark A. Arbing; Sum Chan; Annie Shin; Tung Phan; Christine J. Ahn; Lars Rohlin; Robert P. Gunsalus
Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two “homologous” tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The β-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.
Protein Science | 2010
Mark A. Arbing; Markus Kaufmann; Tung Phan; Sum Chan; Duilio Cascio; David Eisenberg
Mycobacterium tuberculosis encodes five gene clusters (ESX‐1 to ESX‐5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT‐6 and CFP‐10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX‐3 gene cluster, at 1.91 Å resolution. The EsxRS structure is composed of two four‐helix bundles resulting from the 3D domain swapping of the C‐terminal domain of EsxS, the CFP‐10 homolog. The four‐helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT‐6·CFP‐10 (EsxAB) of ESX‐1, but in EsxRS a hinge loop linking the α‐helical domains of EsxS undergoes a loop‐to‐helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT‐6 to exert a cytotoxic effect.
PLOS ONE | 2013
Mark A. Arbing; Sum Chan; Liam Harris; Emmeline Kuo; Tina T. Zhou; Christine J. Ahn; Lin Nguyen; Qixin He; Jamie Lu; Phuong T. Menchavez; Annie Shin; Thomas Holton; Michael R. Sawaya; Duilio Cascio; David Eisenberg
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.
BMC Structural Biology | 2016
Jonathan M. Wagner; Sum Chan; Timothy J. Evans; Sara Kahng; Jennifer Kim; Mark A. Arbing; David Eisenberg; Konstantin V. Korotkov
BackgroundThe ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system.ResultsThis study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB1 and EccD1. The periplasmic domain of EccB1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. The repeat domains of EccB1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD1has a ubiquitin-like fold and forms a dimer with a negatively charged groove.ConclusionsThese structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.
bioRxiv | 2018
Anne T. Tuukkanen; Diana Freire; Sum Chan; Mark A. Arbing; Robert W. Reed; Timothy J. Evans; Grasilda Zenkeviciutė; Jennifer Kim; Sara Kahng; Michael R. Sawaya; Matthias Wilmanns; David Eisenberg; Annabel Parret; Konstantin V. Korotkov
Type VII secretion systems (ESX) are responsible for transport of multiple proteins in mycobacteria. How different ESX systems achieve specific secretion of cognate substrates remains elusive. In the ESX systems, the cytoplasmic chaperone EspG forms complexes with heterodimeric PE-PPE substrates that are secreted from the cells or remain associated with the cell surface. Here we report the crystal structure of the EspG1 chaperone from the ESX-1 system determined using a fusion strategy with T4 lysozyme. EspG1 adopts a quasi 2-fold symmetric structure that consists of a central β-sheet and two α-helical bundles. Additionally, we describe the structures of EspG3 chaperones from four different crystal forms. Alternate conformations of the putative PE-PPE binding site are revealed by comparison of the available EspG3 structures. Analysis of EspG1, EspG3 and EspG5 chaperones using small-angle X-ray scattering (SAXS) reveals that EspG1 and EspG3 chaperones form dimers in solution, which we observed in several of our crystal forms. Finally, we propose a model of the ESX-3 specific EspG3-PE5-PPE4 complex based on the SAXS analysis. Highlights The crystal structure of EspG1 reveals the common architecture of the type VII secretion system chaperones Structures of EspG3 chaperones display a number of conformations that could reflect alternative substrate binding modes EspG3 chaperones dimerize in solution A model of EspG3 in complex with its substrate PE-PPE dimer is proposed based on SAXS data Abbreviations used EOM, ensemble optimization method; MD, molecular dynamics; RMSD, root-mean-square deviation; NSD, normalized spatial discrepancy; RMSF, root-mean-square-fluctuations; SAXS, small-angle X-ray scattering; SEC, size-exclusion chromatography; SeMet, selenomethionine; TEV, tobacco etch virus; TCEP, tris(2-carboxyethyl)phosphine
Journal of Molecular Biology | 2004
Sum Chan; Brent W. Segelke; Timothy Lekin; Heike I. Krupka; Uhn Soo Cho; Min Young Kim; Minyoung So; Chang Yub Kim; Cleo Naranjo; Yvonne Rogers; Min S. Park; Geoffrey S. Waldo; Inna Pashkov; Duilio Cascio; Jeanne L. Perry; Michael R. Sawaya
Physical Review Letters | 2005
Brian Sung Chul Choi; Giovanni Zocchi; Yim Wu; Sum Chan; L. Jeanne Perry
Physical Review Letters | 2005
Brian Sung Chul Choi; Giovanni Zocchi; Stephen Canale; Yim Wu; Sum Chan; L. Jeanne Perry