Sumbla Sheikh
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sumbla Sheikh.
Investigational New Drugs | 2014
Alexander Sturzu; Sumbla Sheikh; Hartmut Echner; Thomas Nägele; Martin Deeg; Bushra Amin; Christian Schwentner; Marius Horger; Ulrike Ernemann; Stefan Heckl
SummaryThe gastrin releasing peptide receptor (GRPR) has been found to be strongly expressed in various types of cancers such as prostate and breast carcinomas. The GRPR ligands gastrin releasing peptide and bombesin can play a very significant role in cancer therapy and diagnostics. In this study we synthesized unlabeled bombesin BBN along with two conjugates in which the correct bombesin (BBN-Rhd) and a mutant bombesin (mBBN-Rhd) sequence was coupled to rhodamine, a fluorescent dye. These novel rhodamine fluorescent conjugates were used to study the targeting and uptake of bombesin on a cellular level. Nine different human cell lines including both tumor and healthy cells were examined using flow cytometry and confocal laser scanning microscopy. GRPR mRNA expression analysis was performed and it was found that the receptor is highly expressed in LNCaP and PC3 cells compared to the rest of other cell lines. Competition experiments were performed to verify the receptor dependence of the labeled conjugates using unmarked bombesin. The present study is a first attempt at direct fluorescence imaging of living cells using bombesin and its target, the GRPR. A rhodamine bombesin conjugate can be used as marker to differentiate between healthy cells and malignant cells such as prostate hyperplasia and prostate carcinoma in the early detection of cancer.
Investigational New Drugs | 2013
Alexander Sturzu; Sumbla Sheikh; Hartmut Echner; Thomas Nägele; Martin Deeg; Christian Schwentner; Marius Horger; Ulrike Ernemann; Stefan Heckl
SummaryThe methods used for detection of prostate cancer and prostate cancer lymph node metastases in medical diagnostics leave room for improvement. Currently, no means of identifying metastasized lymph nodes other than biopsies is available. Markers which are exclusively found on prostate cancer cells present a focal point for potential imaging methods. To complement the established markers like e.g. PCA3–a noncoding mRNA sequence–and PSA–a serine protease–we investigated the ectopically expressed G-protein coupled olfactory receptor OR1D2 as a possible target for prostate-specific detection with its agonist bourgeonal which has been conjugated to two different fluorescent dyes. We performed mRNA expression analysis of the OR1D2 receptor mRNA by reverse transcriptase polymerase chain reaction on LNCaP prostate carcinoma cells and three other non-prostate derived carcinoma cell lines. Additionally, we used flow cytometry to investigate the uptake of fluorescent-dye-bound OR1D2-ligand bourgeonal into the examined carcinoma cell lines. Finally, confocal laser scanning microscopy of in vitro cell culture and in vivo tumor xenografts on mice was performed. We could confirm OR1D2 receptor mRNA overexpression as well as stronger uptake of both bourgeonal conjugates in vitro and in vivo for LNCaP cells compared to the non-prostate derived cell lines. Cytoplasmic accumulation and no adverse effects after in vitro and in vivo application of the conjugates were observed. The conjugates represent a platform for the development of future prostate-specific imaging applications, e.g. detection of metastasized lymph nodes during surgery by intraoperative laser examination.
Investigational New Drugs | 2012
Alexander Sturzu; Sumbla Sheikh; Uwe Klose; Hartmut Echner; Hubert Kalbacher; Martin Deeg; Thomas Nägele; Marius Horger; Ulrike Ernemann; Stefan Heckl
SummaryThe neurotransmitter serotonin is involved in numerous bodily functions via seven different serotonin receptor subfamilies. Serotonin plays a role in gastrointestinal functions like intestinal secretion or peristalsis and neuropsychiatric events like depression or migraine. One of these subtypes has been found on glioblastoma cells, inducing growth promotion. In our study we attempted to target imaging agents to glioblastoma cells via the serotonin receptor. For this we coupled serotonin to the fluorescent dye rhodamine and the magnetic resonance imaging contrast agent gadolinium (Gd)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The cellular uptake, cytotoxicity and detection sensitivity of the conjugates were evaluated by confocal laser scanning microscopy (CLSM), cell growth analysis, flow cytometry and magnetic resonance relaxometry on U373 human glioblastoma cells. Receptor-dependency of the uptake was confirmed by competition experiments with excess of unmarked serotonin. Cellular uptake of the conjugates was found in CLSM, magnetic resonance relaxometry and flow cytometry experiments. CLSM revealed the cytoplasmic character of the uptake. In cell growth analysis experiments no adverse effect of either conjugate on the cells was observed. Competition experiments performed with the conjugates and unmarked serotonin showed decreased conjugate uptake compared to the experiments without competition. In conclusion the neurotransmitter serotonin could be successfully used to target imaging agents into human glioblastoma cells. This makes it of interest for future glioblastoma imaging methods.
Medicinal Chemistry | 2013
Sumbla Sheikh; Alexander Sturzu; Hubert Kalbacher; Uwe Klose; Thomas Nägele; Bushra Amin; Martin Deeg; Marius Horger; Ulrike Ernemann; Stefan Heckl
In a previous study we found that fluorescence-marked vancomycin--a glycopeptide antibiotic--is taken up into human tumor cells. To expand on these investigations we now used the lipoglycodepsipeptide antibiotic ramoplanin. Compared to vancomycin it is not only a bigger molecule, but it also has two potential binding sites for coupling to the imaging agents. Three different ramoplanin imaging conjugates were synthesized, two used for fluorescence imaging and one for magnetic resonance imaging. The two fluorescent dyes used in confocal laser scanning microscopy (CLSM) and fluorescence activated cell sorting (FACS) were fluorescein isothiocyanate (FITC) and rhodamine isothiocyanate (RITC). The third was the magnetic resonance imaging (MRI) contrast agent gadolinium-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (GdDOTA). The uptake of ramoplanin conjugates, their specificity for different cell lines and the accessibility of the conjugates by imaging methods were evaluated on 8 human cell lines (two benign, six malignant) by CLSM, FACS and MRI experiments. Cytotoxicity of the ramoplanin conjugates was determined in the FACS experiments with the propidium iodide and Annexin-V-Fluos indicating any disruption in the cell membranes. Cytoplasmic uptake of the ramoplanin conjugates was observed in confocal laser scanning images and was measured using FACS and MRI experiments. Compared to the vancomycin conjugates the ramoplanin conjugates showed much weaker and slower uptake. Additionally, uptake of the ramoplanin conjugates led to strong membrane disruption and cell death.
European Journal of Pharmaceutical Sciences | 2012
Alexander Sturzu; Sumbla Sheikh; Uwe Klose; Hartmut Echner; Hubert Kalbacher; Martin Deeg; Thomas Nägele; Marius Horger; Christian Schwentner; Ulrike Ernemann; Stefan Heckl
The use of tissue-specific receptor ligands is a promising approach for cancer diagnostics and therapy. Lorglumide, a highly effective competitive ligand for the cholecystokinine-A receptor (CCKRA) was conjugated to a fluorescent dye and a magnetic resonance imaging (MRI) contrast agent to obtain a bifunctional marker for tissue with high CCKRA expression. An intermediate conjugate containing only lorglumide and a fluorescent dye was also produced. By performing CCKRA mRNA expression analysis on carcinoma cell lines we found that CCKRA is highly expressed in PC3 prostate carcinoma cells compared to U373 glioma and U2OS osteosarcoma cells. Uptake, specificity and detection sensitivity of both lorglumide conjugates was evaluated by confocal laser scanning microscopy, fluorescence activated cell sorting (FACS) and magnetic resonance relaxometry. While the conjugate containing only lorglumide and rhodamine isothiocyanate as fluorescent dye showed clearly higher uptake than the bifunctional conjugate in FACS analysis, both conjugates clearly showed preferential staining of the PC3 prostate carcinoma cells. Magnetic resonance relaxometry experiments with the bifunctional conjugate containing the MRI contrast agent gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid confirmed the higher PC3-affinity of the lorglumide ligand. Confocal laser scanning microscopy images of PC3/U2OS mixed cell cultures incubated with the bifunctional conjugate also clearly showed PC3 preference and cytoplasmic dot-like staining concurring with uptake by receptor binding and subsequent receptor internalization. Considering these results, CCKRA ligands like lorglumide could play a role in the future design of prostate-cancer-specific markers.
Current Pharmaceutical Biotechnology | 2012
Alexander Sturzu; Hartmut Echner; Uwe Klose; Sumbla Sheikh; Thomas Nägele; Christian Schwentner; Ulrike Ernemann; Stefan Heckl
Detection of prostate carcinoma metastases is currently performed either via indirect tests like the prostate specific antigen (PSA) or prostate cancer gene 3 (PCA3) or by biopsies from masses found with medical imaging methods. Our goal was to use an ectopic odorant receptor to target prostate-derived cells throughout the body for imaging by magnetic resonance and fluorescence imaging. We synthesized a conjugate containing undecylic aldehyde (an antagonist of the human olfactory receptor hOR17-4), gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (a common magnetic resonance contrast agent) and fluorescein isothiocyanate (a fluorescent dye). Two different prostate cancer cell lines as well as five other different malignant cell lines and healthy prostate epithelial cells were incubated with this conjugate and evaluated by flow cytometry, confocal laser scanning microscopy and magnetic resonance imaging. The prostate- derived healthy and malignant cells showed stronger fluorescence than the non-prostate cancer cell lines in the flow cytometry and confocal laser scanning microscopy experiments. In the magnetic resonance imaging experiments the T1 relaxation time reduction (higher signal intensity) was also stronger for the prostate-derived cells than for the non-prostate cells. The examined conjugate showed high prostate-cell-specificity. This property makes it of potential value in the diagnosis of prostate cancer lymph node metastases.
Current Pharmaceutical Design | 2018
Sumbla Sheikh; Alexander Sturzu; Hubert Kalbacher; Thomas Nägele; Christopher Weidenmaier; Marius Horger; Christian Schwentner; Ulrike Ernemann; Stefan Heckl
Curcumin, as the main ingredient of the curcuma spice, has increasingly become the target of scientific research. The turmeric root where the spice is obtained from has been widely used in the traditional medicine. Moreover, scientific studies have found that curcumin has anti-inflammatory, anti-cancer, anti-angiogenic effects as well as antibacterial properties. Recently, curcumin has gathered interest as a potential therapeutic agent in the research on Alzheimers disease. A consistent problem in the investigative and therapeutic applications of curcumin is its poor solubility in aqueous solutions. In the present study, we synthesized a conjugate of curcumin, the amino acid lysine and the fluorescent dye fluorescein. This conjugate was soluble in cell culture medium and facilitated the examination of curcumin with fluorescence imaging methods. We studied the cell growth impact of unmodified curcumin on seven different human cell lines and then analyzed the uptake and cellular localization of our curcumin conjugate with confocal laser scanning imaging and flow cytometry on the seven cell lines. We found that unbound curcumin inhibited cell growth in vitro and was not taken up into the cells. The curcumin conjugate was internalized into the cell cytoplasm in a dot-like pattern and cellular uptake correlated with the cell membrane damage which was measured using propidium iodide. The CAL-72 osteosarcoma cell exhibited 3-4fold increased conjugate uptake and a strong uniform fluorescein staining in addition to the dot-like pattern observed in all cell lines. In conclusion, we successfully synthesized a novel water-soluble fluorescent curcumin conjugate which showed a strong preference for CAL-72 osteosarcoma cells in vitro.
Medicinal Chemistry | 2016
Alexander Sturzu; Sumbla Sheikh; Hartmut Echner; Martin Deeg; Thomas Nägele; Christopher Weidenmaier; Christian Schwentner; Marius Horger; Ulrike Ernemann; Stefan Heckl
BACKGROUND Second mitochondrial activator of caspase (Smac) is a short mitochondrial peptide. When released from the mitochondria into the cytoplasm, it binds to inhibitor of apoptotic proteins (IAPs) within the cytoplasm and prevents them from inhibiting apoptosis. OBJECTIVE Delivery of external synthetic Smac peptide into the cytoplasm of malignant cells could greatly improve the efficiency of apoptosis-inducing chemotherapeutic agents. METHOD In our study different conjugates based on the seven N-terminal amino acids AVPIAQK of Smac (SmacN7) were produced to obtain a cytoplasm-directed Smac variant. SmacN7 and a point mutant (AVPKAQK) were coupled either to rhodamine alone or to both rhodamine and undecylic aldehyde, which is an antagonist of the Lily-of-the-valley fragrance receptor. The fifth conjugate consisted of rhodamine coupled only to undecylic aldehyde, without SmacN7. The uptake of these five conjugates into three different human cell lines was characterized and quantified by confocal laser scanning microscopy and flow cytometry. A caspase apoptosis assay was performed for cells incubated with the five different conjugates after induction of apoptosis. RESULTS The coupling of undecylic aldehyde to SmacN7 increased the cellular uptake of the correct and mutant conjugates. CONCLUSION Caspase 3/7 apoptosis tests after induction of apoptosis with staurosporine or UV irradiation showed that the coupling of SmacN7 with undecylic aldehyde resulted in a greatly increased adjuvant pro-apoptotic effect compared to the separate components and a mutant SmacN7 peptide sequence in the LNCaP prostate carcinoma cells compared to the benign prostate hyperplasia (BPH) cells and the human embryonal kidney (HEK) cells.
Medicinal Chemistry | 2016
Sumbla Sheikh; Alexander Sturzu; Hubert Kalbacher; Thomas Nägele; Christopher Weidenmaier; Marius Horger; Christian Schwentner; Ulrike Ernemann; Stefan Heckl
BACKGROUND Previously, glycopeptides antibiotics such as vancomycin, ramoplanin and an antifungal antibiotic nystatin have been studied for their diagnostic and therapeutic potential. OBJECTIVE To further explore the diagnostic and chemotherapeutic potential of other antibiotics we have now employed daptomycin, a lipopetide antibiotic and bacitracin, a polypeptide antibiotic in uptake and vitality tests on human cell lines. METHOD Fluorescent conjugates of bacitracin and daptomycin were synthesized using fluorescein isothiocynate (FITC) for confocal laser scanning microscopy (CLSM) and fluorescence activated cell sorting (FACS). The cellular uptake of the synthesized daptomycin and bacitracin conjugates was studied on seven human cell lines, two healthy and five malignant using CLSM and FACS. To examine the cell membrane damage caused by the conjugates FACS experiments were carried out using propidium iodide. RESULTS The uptake pattern was different for both antibiotics for all the cell lines. The cytoplasmic uptake of daptomycin conjugate was lower than the bacitracin conjugate, resulting in decreased cell membrane damage. CONCLUSION No preferential uptake into malignant or healthy cells was found for the two different antibiotic conjugates and the uptake patterns were also different between the two antibiotics. However, the lower cytotoxicity and different uptake mechanism makes daptomycin conjugate a prospective candidate for further study as a diagnostic agent for various intracellular infections.
Medicinal Chemistry | 2014
Sumbla Sheikh; Alexander Sturzu; Hubert Kalbacher; Thomas Nägele; Christopher Weidenmaier; Marius Horger; Ulrike Ernemann; Stefan Heckl
The antitumor activity of antibacterial and antifungal compounds has been of interest in the past. In several investigations glycopeptide antibiotics like bleomycin and antifungal agents like itraconazole have shown direct positive results whereas antifungal polyenes such as amphotericin B have been shown to potentiate the effects of antitumor agents. After having investigated the fluorescence-marked antibacterial glycopeptides vancomycin and ramoplanin on various malignant and healthy human cells in previous studies, the present work is focused on the antifungal polyene nystatin. We coupled nystatin to the fluorescent dye fluorescein isothiocyanate (FITC). After confirming the correct mass by mass spectrometry the effect of the conjugate on nine different human cell lines (two benign and seven tumor cell lines) was examined. The character of the uptake was determined by confocal laser scanning microscopy (CLSM) and the uptake was quantified by fluorescence activated cell sorting (FACS). The addition of propidium iodide (PI) allowed for detection and quantification of cell membrane disruption caused by the fluorescein-nystatin conjugate. Uptake of the conjugate was found to vary among the nine cell lines investigated. Conjugate uptake was strongest after 6 hours in most cell lines. Only the two prostate carcinoma cell lines PC3 and LNCaP showed further increase in uptake after long-time (24h) incubation. PI staining in general correlated well with the conjugate FITC staining values. The Colo205 colon carcinoma cell line and the U373 and LN18 glioblastoma cell lines exhibited very low conjugate uptake and PI staining. The results indicate that this conjugate shows potential for future imaging studies on certain human cancer cells.