Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sumrit Wacharasindhu is active.

Publication


Featured researches published by Sumrit Wacharasindhu.


Journal of Materials Chemistry | 2012

Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds

Thichamporn Eaidkong; Radeemada Mungkarndee; Chaiwat Phollookin; Gamonwarn Tumcharern; Mongkol Sukwattanasinitt; Sumrit Wacharasindhu

Detection and identification of VOCs in their vapor phase is essential for safety and quality assessment. In this work, a novel platform of a paper-based polydiacetylene (PDA) colorimetric sensor array is prepared from eight diacetylene monomers, six of which are amphiphilic and the other two are bolaamphiphilic. To fabricate the sensors, monomers are coated onto a filter paper surface using the drop-casting technique and converted to PDAs by UV irradiation. The PDA sensors show solvent induced irreversible color transition upon exposure to VOC vapors. When combined into a sensing array, the color change pattern as measured by RGB values and statistically analyzed by principal component analysis (PCA) is capable of distinguishing 18 distinct VOCs in the vapor phase. The PCA score and loading plots also allow the reduction of the sensing elements in the array from eight to three PDAs that are capable of classifying 18 VOCs. Utilizing an array containing only two PDAs, various types of automotive fuels including gasoline, gasohol and diesel are successfully classified.


Journal of Colloid and Interface Science | 2011

Roles of head group architecture and side chain length on colorimetric response of polydiacetylene vesicles to temperature, ethanol and pH.

Nipaphat Charoenthai; Thanutpon Pattanatornchai; Sumrit Wacharasindhu; Mongkol Sukwattanasinitt; Rakchart Traiphol

In this contribution, we report the relationship between molecular structures of polydiacetylene (PDA) vesicles, fabricated by using three monomers, 10,12-tricosadiynoic acid (TCDA), 10,12-pentacosadiynoic acid (PCDA) and N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA), and their color-transition behaviors. The modification of side chain length and head group of the PDA vesicles strongly affects the colorimetric response to temperature, ethanol and pH. A shorter side chain of poly(TCDA) yields weaker inter- and intra-chain dispersion interactions in the bilayers compared to the system of poly(PCDA), which in turn results in a faster color transition upon exposure to all stimuli. A change of head group in poly(AEPCDA) slightly reduces the transition temperature. Interestingly, the colorimetric response of poly(AEPCDA) vesicles to the addition of ethanol is found to occur in a two-step fashion while the response of poly(PCDA) vesicles takes place in a one-step process. The amount of ethanol required for inducing complete color-transition of poly(AEPCDA) vesicles is also much higher, about 87% v/v. The increase of pH to ~9 and ~10 causes a color-transition of poly(TCDA) and poly(PCDA) vesicles, respectively. The poly(AEPCDA) vesicles, on the other hand, change color upon decreasing pH to ~0. The colorimetric response also occurs in a multi-step fashion. These discrepancies are attributed to the architecture of surface layers of poly(AEPCDA), constituting amine and amide groups separated by ethyl linkers.


Molecules | 2011

Synthesis, Characterization and Biological Evaluation of Succinate Prodrugs of Curcuminoids for Colon Cancer Treatment

Wisut Wichitnithad; Ubonthip Nimmannit; Sumrit Wacharasindhu; Pornchai Rojsitthisak

A novel series of succinyl derivatives of three curcuminoids were synthesized as potential prodrugs. Symmetrical (curcumin and bisdesmethoxycurcumin) and unsymmetrical (desmethoxycurcumin) curcuminoids were prepared through aldol condensation of 2,4-pentanedione with different benzaldehydes. Esterification of these compounds with a methyl or ethyl ester of succinyl chloride gave the corresponding succinate prodrugs in excellent yields. Anticolon cancer activity of the compounds was evaluated using Caco-2 cells. The succinate prodrugs had IC50 values in the 1.8–9.6 μM range, compared to IC50 values of 3.3–4.9 μM for the parent compounds. Curcumin diethyl disuccinate exhibited the highest potency and was chosen for stability studies. Hydrolysis of this compound in phosphate buffer at pH 7.4 and in human plasma followed pseudo first-order kinetics. In phosphate buffer, the kobs and t1/2 for hydrolysis indicated that the compound was much more stable than curcumin. In human plasma, this compound was able to release curcumin, therefore our results suggest that succinate prodrugs of curcuminoids are stable in phosphate buffer, release the parent curcumin derivatives readily in human plasma, and show anti-colon cancer activity.


Talanta | 2011

Aqueous sols of oligo(ethylene glycol) surface decorated polydiacetylene vesicles for colorimetric detection of Pb2

Pat Narkwiboonwong; Gamolwan Tumcharern; Anupat Potisatityuenyong; Sumrit Wacharasindhu; Mongkol Sukwattanasinitt

A series of ethylene glycol (EG), triethylene glycol (3EG) and pentaethylene glycol (5EG) esters of 10,12-pentacosadiynoic acid (PCDA) are synthesized. The glycol ester lipids can be hydrated and well dispersed in water but they cannot form polydiacetylenes upon UV irradiation. They however can be mixed with PCDA up to 30 mol% and polymerized to form blue sols. The mixed polydiacetylene sols show blue to red thermochromic transition with two-stepped transition temperatures. The first transition temperature decreases with the increase of the glycol ester content as well as the length of their chains indicating greater fluidity of the self-assembled structure due to less collaborative hydrogen bonding among the lipid head groups. These mixed polydiacetylene sol prepared from 30 mol% of the penta(ethylene glycol) ester show linear colorimetric response selectively to Pb(2+) in the range of 5-30 μM.


Molecules | 2011

In Vitro Inhibitory Effects of Cyandin-3-rutinoside on Pancreatic α-Amylase and Its Combined Effect with Acarbose

Sarinya Akkarachiyasit; Sirintorn Yibchok-anun; Sumrit Wacharasindhu; Sirichai Adisakwattana

The inhibitory activity on pancreatic α-amylase by cyanidin-3-rutinoside was examined in vitro. The IC50 value of cyanidin-3-rutinoside against pancreatic α-amylase was 24.4 ± 0.1 μM. The kinetic analysis revealed that pancreatic α-amylase was inhibited by cyanidin-3-rutinoside in a non-competitive manner. The additive inhibition of a combination of cyanidin-3-rutinoside with acarbose against pancreatic α-amylase was also found. These results provide the first evidence for the effect of cyanidin-3-rutinoside in a retarded absorption of carbohydrates by inhibition of pancreatic α-amylase which may be useful as a potential inhibitor for prevention and treatment of diabetes mellitus.


Journal of Colloid and Interface Science | 2013

Control over the color transition behavior of polydiacetylene vesicles using different alcohols

Thanutpon Pattanatornchai; Nipaphat Charoenthai; Sumrit Wacharasindhu; Mongkol Sukwattanasinitt; Rakchart Traiphol

In this contribution, we investigate the color transition behavior of polydiacetylene (PDA) vesicles upon exposure to different chemical stimuli. A series of linear and branched alcohols are used as model additives, allowing systematic control of their molecular shape and polarity. The PDA vesicles are fabricated by using three monomers, 10,12-pentacosadiynoic acid (PCDA), 10,12-tricosadyinoic acid (TCDA), and N-(2-amino ethyl)pentacosa-10,12-dyinamide (AEPCDA). When a series of linear alcohols is used, the longer alcohol length causes color transition of all PDA vesicles. In this system, the penetration of linear alcohols into the inner layer of PDA vesicles is dictated by their polarity. The change of -OH position within the alcohol molecule also affects the degree of penetration. It requires a higher amount of the 2-propanol to induce color transitions of the PDAs compared to that of the 1-propanol. The addition of methyl branches into the hydrophobic tail of alcohols causes an increase in steric effect, which hinders the penetration as well. When the 2,2-dimethyl-1-propanol is used as a stimulus, the color transition of PDAs occurs at much higher alcohol concentration compared to 2-methyl-1-butanol, 3-methyl-1-butanol, and 1-pentanol. The variation of PDA structures also affects their ability to interact with the alcohols. The modified head group of poly(AEPCDA) promotes the ability to distinguish between 1-propanol and 2-propanol or 1-propanol and ethanol.


Journal of Hazardous Materials | 2016

New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging.

Rangsarit Sukato; Nuanphan Sangpetch; Tanapat Palaga; Suthikorn Jantra; Viwat Vchirawongkwin; Chanantida Jongwohan; Mongkol Sukwattanasinitt; Sumrit Wacharasindhu

Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.


Biosensors and Bioelectronics | 2014

Colorimetric detection of dichlorvos using polydiacetylene vesicles with acetylcholinesterase and cationic surfactants.

Rungnapa Pimsen; Akachai Khumsri; Sumrit Wacharasindhu; Gamolwan Tumcharern; Mongkol Sukwattanasinitt

Widespread use of dichlorvos in agriculture has posed serious concern for food and water contamination. A new colorimetric method for the detection of dichlorvos based on polydiacethylene and acetylcholinesterase inhibition is developed. The blue-to-red color transition of poly(10,12-pentacosadynoic acid) vesicles can be induced by myristoylcholine which is enzymatically hydrolyzed by acetylcholinesterase to myristic acid and choline to prevent the color transition. In the presence of dichlorvos, the hydrolytic activity of the enzyme is inhibited that the blue-to-red color transition is restored with a linear correlation to the dichlorvos concentration. Using UV-vis absorption spectrometer, the limit of dichlorvos detection is 6.7 ppb. A naked eye detection of 50 ppb dichlorvos is achievable by using dimiristoylphosphatidylcholine to the diacetylene mixed lipid vesicles.


European Journal of Medicinal Chemistry | 2013

Quercitylcinnamates, a new series of antidiabetic bioconjugates possessing α-glucosidase inhibition and antioxidant.

Eakkaphon Rattanangkool; Preecha Kittikhunnatham; Thanakorn Damsud; Sumrit Wacharasindhu; Preecha Phuwapraisirisan

Antidiabetic agents possessing dual functions, α-glucosidase inhibition and antioxidant, have been accepted to be more useful than currently used antidiabetic drugs because they not only suppress hyperglycemia but also prevent risk of complications. Herein, we design antidiabetic bioconjugates comprising of (+)-proto-quercitol as a glucomimic and cinnamic analogs as antioxidant moieties. Fifteen quercitylcinnamates were synthesized by direct coupling through ester bond in the presence of DCC and DMAP. Particular quercityl esters 6a, 7a and 8a selectively inhibited rat intestinal maltase and sucrose 4-6 times more potently than their parents 6, 7 and 8. Of synthesized bioconjugates, 6a was the most potent inhibitor against maltase and sucrose with IC₅₀ values of 5.31 and 43.65 μM, respectively. Of interest, its inhibitory potency toward maltase was 6 times greater than its parent, caffeic acid (6), while its radical scavenging (SC₅₀ 0.11 mM) was comparable to that of commercial antioxidant BHA. Subsequent investigation on mechanism underlying inhibitory effect of 6a indicated that it blocked maltase and sucrose functions by mixed inhibition through competitive and noncompetitive manners.


Green Chemistry | 2015

Direct synthesis of aryl substituted pyrroles from calcium carbide: an underestimated chemical feedstock

Narongpol Kaewchangwat; Rangsarit Sukato; Viwat Vchirawongkwin; Tirayut Vilaivan; Mongkol Sukwattanasinitt; Sumrit Wacharasindhu

In this work, a novel synthetic methodology for the preparation of aryl pyrroles directly from the reaction of calcium carbide with oxime is reported. Various pyrrole derivatives are generated from the corresponding oximes in satisfactory yields (49–88%) under the optimized conditions. The one-pot synthesis of aryl pyrrole from widely available ketone is also successfully developed. A new near-infrared fluorescent BODIPY dye containing a phenyl substitution at the C-3 position is expediently prepared from the aryl pyrrole derived from this methodology. The key benefit of this methodology is the use of an inexpensive and less hazardous primary chemical feedstock, calcium carbide, in a wet solvent without any metal catalysts. This process offers a novel cost-efficient route for the synthesis of functionalized pyrrole.

Collaboration


Dive into the Sumrit Wacharasindhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gamolwan Tumcharern

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge