Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sundaravadivel Balasubramanian is active.

Publication


Featured researches published by Sundaravadivel Balasubramanian.


American Journal of Physiology-heart and Circulatory Physiology | 2008

In vivo administration of calpeptin attenuates calpain activation and cardiomyocyte loss in pressure-overloaded feline myocardium.

Santhosh K. Mani; Hirokazu Shiraishi; Sundaravadivel Balasubramanian; Kentaro Yamane; Meenakshi A. Chellaiah; George Cooper; Naren Banik; Michael R. Zile; Dhandapani Kuppuswamy

Calpain activation is linked to the cleavage of several cytoskeletal proteins and could be an important contributor to the loss of cardiomyocytes and contractile dysfunction during cardiac pressure overload (PO). Using a feline right ventricular (RV) PO model, we analyzed calpain activation during the early compensatory period of cardiac hypertrophy. Calpain enrichment and its increased activity with a reduced calpastatin level were observed in 24- to 48-h-PO myocardium, and these changes returned to basal level by 1 wk of PO. Histochemical studies in 24-h-PO myocardium revealed the presence of TdT-mediated dUTP nick-end label (TUNEL)-positive cardiomyocytes, which exhibited enrichment of calpain and gelsolin. Biochemical studies showed an increase in histone H2B phosphorylation and cytoskeletal binding and cleavage of gelsolin, which indicate programmed cardiomyocyte cell death. To test whether calpain inhibition could prevent these changes, we administered calpeptin (0.6 mg/kg iv) by bolus injections twice, 15 min before and 6 h after induction of 24-h PO. Calpeptin blocked the following PO-induced changes: calpain enrichment and activation, decreased calpastatin level, caspase-3 activation, enrichment and cleavage of gelsolin, TUNEL staining, and histone H2B phosphorylation. Although similar administration of a caspase inhibitor, N-benzoylcarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VD-fmk), blocked caspase-3 activation, it did not alleviate other aforementioned changes. These results indicate that biochemical markers of cardiomyocyte cell death, such as sarcomeric disarray, gelsolin cleavage, and TUNEL-positive nuclei, are mediated, at least in part, by calpain and that calpeptin may serve as a potential therapeutic agent to prevent cardiomyocyte loss and preserve myocardial structure and function during cardiac hypertrophy.


Journal of Molecular and Cellular Cardiology | 2003

Focal complex formation in adult cardiomyocytes is accompanied by the activation of β3 integrin and c-Src

Christopher D. Willey; Sundaravadivel Balasubramanian; María C. Rodríguez Rosas; Robert S. Ross; Dhandapani Kuppuswamy

In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.


Cardiovascular and Hematological Agents in Medicinal Chemistry | 2009

mTOR in Growth and Protection of Hypertrophying Myocardium

Sundaravadivel Balasubramanian; Rebecca K. Johnston; Phillip C. Moschella; Santhosh K. Mani; William J. Tuxworth; Dhandapani Kuppuswamy

In response to an increased hemodynamic load, such as pressure or volume overload, cardiac hypertrophy ensues as an adaptive mechanism. Although hypertrophy initially maintains ventricular function, a yet undefined derailment in this process eventually leads to compromised function (decompensation) and eventually culminates in congestive heart failure (CHF). Therefore, determining the molecular signatures induced during compensatory growth is important to delineate specific mechanisms responsible for the transition into CHF. Compensatory growth involves multiple processes. At the cardiomyocyte level, one major event is increased protein turnover where enhanced protein synthesis is accompanied by increased removal of deleterious proteins. Many pathways that mediate protein turnover depend on a key molecule, mammalian target of rapamycin (mTOR). In pressure-overloaded myocardium, adrenergic receptors, growth factor receptors, and integrins are known to activate mTOR in a PI3K-dependent and/or independent manner with the involvement of specific PKC isoforms. mTOR, described as a sensor of a cells nutrition and energy status, is uniquely positioned to activate pathways that regulate translation, cell size, and the ubiquitin-proteasome system (UPS) through rapamycin-sensitive and -insensitive signaling modules. The rapamycin-sensitive complex, known as mTOR complex 1 (mTORC1), consists of mTOR, rapamycin-sensitive adaptor protein of mTOR (Raptor) and mLST8 and promotes protein translation and cell size via molecules such as S6K1. The rapamycin-insensitive complex (mTORC2) consists of mTOR, mLST8, rapamycin-insensitive companion of mTOR (Rictor), mSin1 and Protor. mTORC2 regulates the actin cytoskeleton in addition to activating Akt (Protein kinase B) for the subsequent removal of proapoptotic factors via the UPS for cell survival. In this review, we discuss pathways and key targets of mTOR complexes that mediate growth and survival of hypertrophying cardiomyocytes and the therapeutic potential of mTOR inhibitor, rapamycin.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Calpain inhibition preserves myocardial structure and function following myocardial infarction.

Santhosh K. Mani; Sundaravadivel Balasubramanian; Juozas A. Zavadzkas; Laura B. Jeffords; William T Rivers; Michael R. Zile; Rupak Mukherjee; Francis G. Spinale; Dhandapani Kuppuswamy

Cardiac pathology, such as myocardial infarction (MI), activates intracellular proteases that often trigger programmed cell death and contribute to maladaptive changes in myocardial structure and function. To test whether inhibition of calpain, a Ca(2+)-dependent cysteine protease, would prevent these changes, we used a mouse MI model. Calpeptin, an aldehydic inhibitor of calpain, was intravenously administered at 0.5 mg/kg body wt before MI induction and then at the same dose subcutaneously once per day. Both calpeptin-treated (n = 6) and untreated (n = 6) MI mice were used to study changes in myocardial structure and function after 4 days of MI, where end-diastolic volume (EDV) and left ventricular ejection fraction (EF) were measured by echocardiography. Calpain activation and programmed cell death were measured by immunohistochemistry, Western blotting, and TdT-mediated dUTP nick-end labeling (TUNEL). In MI mice, calpeptin treatment resulted in a significant improvement in EF [EF decreased from 67 + or - 2% pre-MI to 30 + or - 4% with MI only vs. 41 + or - 2% with MI + calpeptin] and attenuated the increase in EDV [EDV increased from 42 + or - 2 microl pre-MI to 73 + or - 4 microl with MI only vs. 55 + or - 4 microl with MI + calpeptin]. Furthermore, calpeptin treatment resulted in marked reduction in calpain- and caspase-3-associated changes and TUNEL staining. These studies indicate that calpain contributes to MI-induced alterations in myocardial structure and function and that it could be a potential therapeutic target in treating MI patients.


The FASEB Journal | 2009

β3 Integrin-mediated ubiquitination activates survival signaling during myocardial hypertrophy

Rebecca K. Johnston; Sundaravadivel Balasubramanian; Harinath Kasiganesan; Catalin F. Baicu; Michael R. Zile; Dhandapani Kuppuswamy

Identifying the molecular mechanisms activated in compensatory hypertrophy and absent during decompensation will provide molecular targets for prevention of heart failure. We have previously shown enhanced ubiquitination (Ub) during the early growth period of pressure overload (PO) hypertrophy near intercalated discs of cardiomyocytes, where integrins are important for mechanotransduction. In this study, we tested the role of integrins upstream of Ub, whether enhanced Ub contributes to survival signaling in early PO, and if loss of this mechanism could lead to decreased ventricular function. The study used a β3integrin (–/–) mouse and a wild‐type mouse as a control for in vivo PO by transverse aortic constriction (TAC) and for cultured cardiomyocytes in vitro, stimulated with the integrin‐activating peptide RGD. We demonstrate β3 integrin mediates transient Ub of targeted proteins during PO hypertrophy, which is necessary for cardiomyocyte survival and to maintain ventricular function. Prosurvival signaling proceeds by initiation of NF‐KB transcription of the E3 ligase, cIAP1. In PO α3–/– mice, absence of this mechanism correlates with increased TUNEL staining and decreased ventricular mass and function by 4 wk. This is the first study to show that a β3 integrin/Ub/NF‐KB pathway contributes to compensatory hypertrophic growth.— Johnston, R. K., Balasubramanian, S., Kasiganesan, H., Baicu, C. F., Zile, M. R., Kuppuswamy, D. β3Integrin‐mediated ubiquitination activates survival signaling during myocardial hypertrophy. FASEBJ. 23, 2759–2771 (2009)


RNA Biology | 2013

Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells.

Sudha Talwar; Sundaravadivel Balasubramanian; Santhanalakshmi Sundaramurthy; Reniqua House; Carol J. Wilusz; Dhandapani Kuppuswamy; Nisha J. D'Silva; Marion Boyd Gillespie; Elizabeth G. Hill; Viswanathan Palanisamy

CELF1 RNA-binding protein, otherwise called CUGBP1, associates and coordinates the degradation of GU-rich element (GRE) containing mRNA’s encoding factors important for cell growth, migration and apoptosis. Although many substrates of CELF1 have been identified, the biological significance of CELF1-mediated mRNA decay remains unclear. As the processes modulated by CELF1 are frequently disrupted in cancer, we investigated the expression and role of CELF1 in oral squamous cancer cells (OSCCs). We determined that CELF1 is reproducibly overexpressed in OSCC tissues and cell lines. Moreover, depletion of CELF1 reduced proliferation and increased apoptosis in OSCCs, but had negligible effect in non-transformed cells. We found that CELF1 associates directly with the 3′UTR of mRNAs encoding the pro-apoptotic factors BAD, BAX and JunD and mediates their rapid decay. Specifically, 3′UTR fragment analysis of JunD revealed that the GRE region is critical for binding with CELF1 and expression of JunD in oral cancer cells. In addition, silencing of CELF1 rendered BAD, BAX and JunD mRNAs stable and increased their protein expression in oral cancer cells. Taken together, these results support a critical role for CELF1 in modulating apoptosis and implicate this RNA-binding protein as a cancer marker and potential therapeutic target.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Rapamycin treatment augments both protein ubiquitination and Akt activation in pressure-overloaded rat myocardium

Rebecca K. Harston; John McKillop; Phillip C. Moschella; An O. Van Laer; Lakeya Quinones; Catalin F. Baicu; Sundaravadivel Balasubramanian; Michael R. Zile; Dhandapani Kuppuswamy

Ubiquitin-mediated protein degradation is necessary for both increased ventricular mass and survival signaling for compensated hypertrophy in pressure-overloaded (PO) myocardium. Another molecular keystone involved in the hypertrophic growth process is the mammalian target of rapamycin (mTOR), which forms two distinct functional complexes: mTORC1 that activates p70S6 kinase-1 to enhance protein synthesis and mTORC2 that activates Akt to promote cell survival. Independent studies in animal models show that rapamycin treatment that alters mTOR complexes also reduces hypertrophic growth and increases lifespan by an unknown mechanism. We tested whether the ubiquitin-mediated regulation of growth and survival in hypertrophic myocardium is linked to the mTOR pathway. For in vivo studies, right ventricle PO in rats was conducted by pulmonary artery banding; the normally loaded left ventricle served as an internal control. Rapamycin (0.75 mg/kg per day) or vehicle alone was administered intraperitoneally for 3 days or 2 wk. Immunoblot and immunofluorescence imaging showed that the level of ubiquitylated proteins in cardiomyocytes that increased following 48 h of PO was enhanced by rapamycin. Rapamycin pretreatment also significantly increased PO-induced Akt phosphorylation at S473, a finding confirmed in cardiomyocytes in vitro to be downstream of mTORC2. Analysis of prosurvival signaling in vivo showed that rapamycin increased PO-induced degradation of phosphorylated inhibitor of κB, enhanced expression of cellular inhibitor of apoptosis protein 1, and decreased active caspase-3. Long-term rapamycin treatment in 2-wk PO myocardium blunted hypertrophy, improved contractile function, and reduced caspase-3 and calpain activation. These data indicate potential cardioprotective benefits of rapamycin in PO hypertrophy.


Journal of Cardiovascular Pharmacology | 2010

Lack of β3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium

Geetha Suryakumar; Harinath Kasiganesan; Sundaravadivel Balasubramanian; Dhandapani Kuppuswamy

Although cardiac hypertrophy initially ensues as a compensatory mechanism, it often culminates in congestive heart failure. Based on our earlier studies that calpain and β3 integrin play cell death and survival roles, respectively, during pressure-overload (PO) hypertrophy, we investigated if the loss of β3 integrin signaling is a potential mechanism for calpain-mediated cardiomyocyte death during PO. β3 Integrin knockout (β3-/-) and wild-type mice were used to induce either moderate or severe PO in vivo for short-term (72-hour) and long-term (4-week) transverse aortic constriction. Whereas wild-type mice showed no changes during moderate PO at both time points, β3-/- mice exhibited both enrichment of the μ-calpain isoform and programmed cell death of cardiomyocytes after 4-week PO. However, with severe PO that caused increased mortality in both mice groups, cell death was observed in wild-type mice also. To study calpains role, calpeptin, a specific inhibitor of calpain, was administered through an osmotic mini-pump at 2.5 mg/kg per day beginning 3 days before moderate transverse aortic constriction or sham surgery. Calpeptin administration blocked both calpain enrichment and myocardial cell death in the 4-week PO β3-/- mice. Because β3 integrin contributes to cardioprotective signaling, these studies indicate that the loss of specific integrin function could be a key mechanism for calpain-mediated programmed cell death of cardiomyocytes in PO myocardium.


PLOS ONE | 2012

β3 Integrin in Cardiac Fibroblast Is Critical for Extracellular Matrix Accumulation during Pressure Overload Hypertrophy in Mouse

Sundaravadivel Balasubramanian; Lakeya Quinones; Harinath Kasiganesan; Yuhua Zhang; Dorea L. Pleasant; Kamala P. Sundararaj; Michael R. Zile; Amy D. Bradshaw; Dhandapani Kuppuswamy

The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3−/−) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3−/− mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3−/− mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3−/− mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3−/− mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3−/− cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3−/− cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis.


PLOS ONE | 2010

Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes

Sundaravadivel Balasubramanian; Santhosh K. Mani; Harinath Kasiganesan; Catalin C. Baicu; Dhandapani Kuppuswamy

The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during hypertrophic stimulation.

Collaboration


Dive into the Sundaravadivel Balasubramanian's collaboration.

Top Co-Authors

Avatar

Dhandapani Kuppuswamy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Harinath Kasiganesan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Michael R. Zile

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Dorea L. Pleasant

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lakeya Quinones

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Santhosh K. Mani

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Amy D. Bradshaw

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Graham W. Warren

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hirokazu Shiraishi

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kamala P. Sundararaj

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge