Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sundari Suresh is active.

Publication


Featured researches published by Sundari Suresh.


Nature Chemical Biology | 2008

An integrated platform of genomic assays reveals small-molecule bioactivities

Shawn Hoon; A. M. Smith; Iain M. Wallace; Sundari Suresh; Molly Miranda; Eula Fung; Mark R. Proctor; Kevan M. Shokat; Chao Zhang; Ronald W. Davis; Guri Giaever; Robert P. St.Onge; Corey Nislow

Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.


Science | 2014

Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures

Anna Y. Lee; Robert P. St.Onge; Michael J. Proctor; Iain M. Wallace; Aaron H. Nile; Paul A. Spagnuolo; Yulia Jitkova; Marcela Gronda; Yan Wu; Moshe K. Kim; Kahlin Cheung-Ong; Nikko P. Torres; Eric D. Spear; Mitchell K.L. Han; Ulrich Schlecht; Sundari Suresh; Geoffrey Duby; Lawrence E. Heisler; Anuradha Surendra; Eula Fung; Malene L. Urbanus; Marinella Gebbia; Elena Lissina; Molly Miranda; Jennifer Chiang; Ana Aparicio; Mahel Zeghouf; Ronald W. Davis; Jacqueline Cherfils; Marc Boutry

Yeasty HIPHOP In order to identify how chemical compounds target genes and affect the physiology of the cell, tests of the perturbations that occur when treated with a range of pharmacological chemicals are required. By examining the haploinsufficiency profiling (HIP) and homozygous profiling (HOP) chemogenomic platforms, Lee et al. (p. 208) analyzed the response of yeast to thousands of different small molecules, with genetic, proteomic, and bioinformatic analyses. Over 300 compounds were identified that targeted 121 genes within 45 cellular response signature networks. These networks were used to extrapolate the likely effects of related chemicals, their impact upon genetic pathways, and to identify putative gene functions. Guilt by association helps identify the chemogenomic signatures of compounds targeting yeast genes. Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Multiplex assay for condition-dependent changes in protein–protein interactions

Ulrich Schlecht; Molly Miranda; Sundari Suresh; Ronald W. Davis; Robert P. St.Onge

Changes in protein–protein interactions that occur in response to environmental cues are difficult to uncover and have been poorly characterized to date. Here we describe a yeast-based assay that allows many binary protein interactions to be assessed in parallel and under various conditions. This method combines molecular bar-coding and tag array technology with the murine dihydrofolate reductase-based protein-fragment complementation assay. A total of 238 protein-fragment complementation assay strains, each representing a unique binary protein complex, were tagged with molecular barcodes, pooled, and then interrogated against a panel of 80 diverse small molecules. Our method successfully identified specific disruption of the Hom3:Fpr1 interaction by the immunosuppressant FK506, illustrating the assay’s capacity to identify chemical inhibitors of protein–protein interactions. Among the additional findings was specific cellular depletion of the Dst1:Rbp9 complex by the anthracycline drug doxorubicin, but not by the related drug idarubicin. The assay also revealed chemical-induced accumulation of several binary multidrug transporter complexes that largely paralleled increases in transcript levels. Further assessment of two such interactions (Tpo1:Pdr5 and Snq2:Pdr5) in the presence of 1,246 unique chemical compounds revealed a positive correlation between drug lipophilicity and the drug response in yeast.


Nature Chemical Biology | 2014

PITPs as targets for selectively interfering with phosphoinositide signaling in cells

Aaron H. Nile; Ashutosh Tripathi; Peihua Yuan; Carl J. Mousley; Sundari Suresh; Iain M. Wallace; Sweety D. Shah; Denise Teotico Pohlhaus; Brenda Temple; Corey Nislow; Guri Giaever; Alexander Tropsha; Ronald W. Davis; Robert P. St.Onge; Vytas A. Bankaitis

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production, and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs, nor PITPs in general, have been exploited as targets for chemical inhibition for such purposes. Herein, we validate the first small molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and are effective inhibitors in vitro and in vivo. We further establish Sec14 is the sole essential NPPM target in yeast, that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects, and demonstrate NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof-of-concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.


Nature Biotechnology | 2018

Multiplexed precision genome editing with trackable genomic barcodes in yeast

Kevin Roy; Justin D. Smith; Sibylle Chantal Vonesch; Gen Lin; Chelsea Szu Tu; Alex R Lederer; Angela Chu; Sundari Suresh; Michelle Nguyen; Joe Horecka; Ashutosh Tripathi; Wallace T Burnett; Maddison A Morgan; Julia Schulz; Kevin M Orsley; Wu Wei; Raeka S. Aiyar; Ronald W. Davis; Vytas A. Bankaitis; James E Haber; Marc L. Salit; Robert P. St.Onge; Lars M. Steinmetz

Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR–Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide–donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA–Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.


Nature Communications | 2014

Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders.

Raeka S. Aiyar; Maria Bohnert; Stéphane Duvezin-Caubet; Cécile Voisset; Julien Gagneur; Emilie S. Fritsch; Elodie Couplan; Karina von der Malsburg; Charlotta Funaya; Flavie Soubigou; Florence Courtin; Sundari Suresh; Roza Kucharczyk; Justine Evrard; Claude Antony; Robert P. St.Onge; Marc Blondel; Jean-Paul di Rago; Martin van der Laan; Lars M. Steinmetz

Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases.


Molecular Systems Biology | 2017

A method for high‐throughput production of sequence‐verified DNA libraries and strain collections

Justin D. Smith; Ulrich Schlecht; Weihong Xu; Sundari Suresh; Joe Horecka; Michael J. Proctor; Raeka S. Aiyar; Richard A O Bennett; Angela Chu; Yong Fuga Li; Kevin Roy; Ronald W. Davis; Lars M. Steinmetz; Richard W. Hyman; Sasha F. Levy; Robert P. St.Onge

The low costs of array‐synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost‐effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site‐specific recombination to index library DNA, and next‐generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost‐effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.


BMC Genomics | 2014

A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system

Ulrich Schlecht; Sundari Suresh; Weihong Xu; Ana Aparicio; Angela Chu; Michael J. Proctor; Ronald W. Davis; Curt Scharfe; Robert P. St.Onge

BackgroundCopper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health.ResultsWe found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu’s positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson’s disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin.ConclusionsA functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.


Pharmacogenetics and Genomics | 2012

Identification of drug targets by chemogenomic and metabolomic profiling in yeast.

Manhong Wu; Ming Zheng; Weiruo Zhang; Sundari Suresh; Ulrich Schlecht; William L. Fitch; Aronova S; Baumann S; Ronald W. Davis; St Onge R; David L. Dill; Gary Peltz

Objective To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. Basic methods We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. Results and conclusion The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets.


Molecular Systems Biology | 2017

Quantitative analysis of protein interaction network dynamics in yeast

Albi Celaj; Ulrich Schlecht; Justin D. Smith; Weihong Xu; Sundari Suresh; Molly Miranda; Ana Aparicio; Mark R. Proctor; Ronald W. Davis; Frederick P. Roth; Robert P. St.Onge

Many cellular functions are mediated by protein–protein interaction networks, which are environment dependent. However, systematic measurement of interactions in diverse environments is required to better understand the relative importance of different mechanisms underlying network dynamics. To investigate environment‐dependent protein complex dynamics, we used a DNA‐barcode‐based multiplexed protein interaction assay in Saccharomyces cerevisiae to measure in vivo abundance of 1,379 binary protein complexes under 14 environments. Many binary complexes (55%) were environment dependent, especially those involving transmembrane transporters. We observed many concerted changes around highly connected proteins, and overall network dynamics suggested that “concerted” protein‐centered changes are prevalent. Under a diauxic shift in carbon source from glucose to ethanol, a mass‐action‐based model using relative mRNA levels explained an estimated 47% of the observed variance in binary complex abundance and predicted the direction of concerted binary complex changes with 88% accuracy. Thus, we provide a resource of yeast protein interaction measurements across diverse environments and illustrate the value of this resource in revealing mechanisms of network dynamics.

Collaboration


Dive into the Sundari Suresh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corey Nislow

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Guri Giaever

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Aparicio

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge