Sung-Hoon Jo
Hannam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sung-Hoon Jo.
International Journal of Molecular Sciences | 2011
Sun-Ho Kim; Sung-Hoon Jo; Young-In Kwon; Jae-Kwan Hwang
Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L.) extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS) was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50) of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast) in EOS-treated SD rats (0.5 g-EOS/kg) was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL). The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg) was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL). Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053) on sucrase and maltase activities in intestine were evaluated in SD rat model. Compared to the upper and middle parts of intestine, the activities of sucrase in the lower parts of intestine remained significantly higher after two weeks of EOS treatment. These results indicate that EOS may improve exaggerated postprandial spikes in blood glucose and glucose homeostasis since it inhibits intestinal sucrase and thus delays carbohydrate absorption, although clinical trials are needed.
International Journal of Molecular Sciences | 2011
Sung-Hoon Jo; Kyoung-Soo Ha; Kyoung-Sik Moon; Ok-Hwan Lee; Hae-Dong Jang; Young-In Kwon
The entrocytes of the small intestine can only absorb monosaccharides such as glucose and fructose from our diet. The intestinal absorption of dietary carbohydrates such as maltose and sucrose is carried out by a group of α-glucosidases. Inhibition of these enzymes can significantly decrease the postprandial increase of blood glucose level after a mixed carbohydrate diet. Therefore, the inhibitory activity of Omija (Schizandra chinensis) extract against rat intestinal α-glucosidase and porcine pancreatic α-amylase were investigated in vitro and in vivo. The in vitro inhibitory activities of water extract of Omija pulp/skin (OPE) on α-glucosidase and α-amylase were potent when compared to Omija seeds extract (OSE). The postprandial blood glucose lowering effect of Omija extracts was compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, OPE significantly reduced the blood glucose increase after sucrose loading. Furthermore, the oxygen radical absorbance capacity (ORAC) of OSE and OPE was evaluated. OPE had higher peroxyl radical absorbing activity than OSE. These results suggest that Omija, which has high ORAC value with α-glucosidase inhibitory activity and blood glucose lowering effect, could be physiologically useful for treatment of diabetes, although clinical trials are needed.
International Journal of Molecular Sciences | 2013
Sung-Hoon Jo; Kyoung-Soo Ha; Kyoung-Sik Moon; Jong-Gwan Kim; Chen-Gum Oh; Young-Cheul Kim; Emmanouil Apostolidis; Young-In Kwon
This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; <1000 Da, GO2KA2; 1000–10,000 Da, GO2KA3; MW > 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW < 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.
International Journal of Molecular Sciences | 2015
Jung-Bae Oh; Sung-Hoon Jo; Justin S. Kim; Kyoung-Soo Ha; Jung-Yun Lee; Hwang-Yong Choi; Seok-Yeong Yu; Young-In Kwon; Young-Cheul Kim
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry.
Food Science and Biotechnology | 2014
Sung-Hoon Jo; Kyoung-Soo Ha; Jong-Wook Lee; Young-Cheul Kim; Emmanouil Apostolidis; Young-In Kwon
The effects of chitosan-oligosaccharide (GO2KA1) on postprandial blood glucose levels in adults with normal blood glucose levels were investigated. Postprandial blood glucose levels were measured at 30, 60, 90, and 120 min after sucrose administration with and without 500 mg of GO2KA1. GO2KA1 administration reduced the area under the blood glucose-time curve (AUC) and the blood glucose peak (Cmax) values while the time of peak plasma concentration of blood glucose (Tmax) value was significantly (p<0.05) increased, compared to controls. GO2KA1 reduced postprandial blood glucose level increases via slower absorption of glucose in the small intestine based on carbohydrate hydrolyzing enzyme inhibition.
International Journal of Molecular Sciences | 2014
Kwang-Hyoung Lee; Kyoung-Soo Ha; Sung-Hoon Jo; Chong M. Lee; Young-Cheul Kim; Kwang-Hoe Chung; Young-In Kwon
We have previously reported that Amadori compounds exert anti-diabetic effects by lowering sucrose-induced hyperglycemia in normal Sprague-Dawley rats. In the present study we extended our recent findings to evaluate whether α-glucosidase inhibitor arginyl-fructose (AF) lowers blood glucose level in diabetic db/db mice, a genetic model for type 2 diabetes. The db/db mice were randomly assigned to high-carbohydrate diets (66.1% corn starch) with and without AF (4% in the diet) for 6 weeks. Changes in body weight, blood glucose level, and food intake were measured daily for 42 days. Dietary supplementation of AF resulted in a significant decrease of blood glucose level (p < 0.001) and body weight (p < 0.001). The level of HbA1c, a better indicator of plasma glucose concentration over prolonged periods of time, was also significantly decreased for 6-week period (p < 0.001). Dietary treatment of acarbose® (0.04% in diet), a positive control, also significantly alleviated the level of blood glucose, HbA1c, and body weight. These results indicate that AF Maillard reaction product improves postprandial hyperglycemia by suppressing glucose absorption as well as decreasing HbA1c level.
Archives of Pharmacal Research | 2011
Nguyen Xuan Nhiem; Bui Huu Tai; Phan Van Kiem; Chau Van Minh; Nguyen Xuan Cuong; Nguyen Huu Tung; Vu Kim Thu; Trinh Nam Trung; Hoang Le Tuan Anh; Sung-Hoon Jo; Hae-Dong Jang; Young-In Kwon; Young Ho Kim
Eight compounds were isolated from methanol extract of Plantago major L. leaves and investigated for their ability to inhibit angiotensin I-converting enzyme activity. Among them, compound 1 showed the most potent inhibition with rate of 28.06 ± 0.21% at a concentration of 100 μM. Compounds 2 and 8 exhibited weak activities. These results suggest that compound 1 might contribute to the ability of P. major to inhibit the activity of angiotensin I- converting enzyme.
Food Science and Biotechnology | 2014
Eun-Ji Choi; Eun-Hye Ka; Cha-Young Jo; Sung-Hoon Jo; Emmanouil Apostolidis; Mee-Sook Lee; Hae-Dong Jang; Young-In Kwon
Antibacterial and antioxidant activities of wheat seed ethyl acetate extracts for Jokyoung (JK), Dark northern spring (DNS), Keumkang (KK), Woori (WR), and Winter wheat (WW) were investigated. Antibacterial activities were evaluated in vitro against the common food and cosmetic industry contaminants Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus using well diffusion assays. WW had the highest inhibitory activity against all tested strains, with S. aureus being the most sensitive strain. The minimum inhibitory concentration (MIC) values of WW and WR against S. aureus were 0.50 and 1.25 mg/mL, respectively. The 2,6-dimethoxy-1,4- benzoquinone (DMBQ) content was measured using HPLC. The antibacterial activities of wheat seed extracts were correlated with the total phenolic contents (Pearson’s correlation coefficient=0.994), with the ABTS radical scavenging activity (0.978), and with the DMBQ content (0.968). WW and WR have potential for use as natural antimicrobials for prevention of food and cosmetics spoilage.
Food Science and Biotechnology | 2010
Myung-Hee Kim; Sung-Hoon Jo; Hae-Dong Jang; Mee Sook Lee; Young-In Kwon
BMC Complementary and Alternative Medicine | 2014
Jong-Gwan Kim; Sung-Hoon Jo; Kyoung-Soo Ha; Sung-Chul Kim; Young Cheul Kim; Emmanouil Apostolidis; Young-In Kwon