Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Hwan Ahn is active.

Publication


Featured researches published by Sung Hwan Ahn.


Surface & Coatings Technology | 2002

A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method

Sung Hwan Ahn; Yoon-Seok Choi; J.G. Kim; J.G. Han

The corrosion behavior of Cr-N coated steels with different phases (α-Cr, CrN and Cr2N) deposited by cathodic arc deposition on AISI H13 steel was investigated in a 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization tests, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization tests than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the Cr2N coating than in the other Cr-N coated steels. EIS measurements showed, for most of the Cr-N coated steels, that the Bode plot presented two time constants. Also, the Cr2N coating represented the characteristic of Warburg behavior after 72 h of immersion. The coating morphologies were examined in planar view and cross-section by SEM analysis and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, it is concluded that the CrN coating provided a better corrosion protection than the other Cr-N coated steels.


International Journal of Radiation Oncology Biology Physics | 2010

Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

Myonggeun Yoon; Sung Hwan Ahn; Jinsung Kim; Dong Ho Shin; Sung Yong Park; Se Byeong Lee; Kyung Hwan Shin; Kwan Ho Cho

PURPOSE To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. METHODS AND MATERIALS Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate cancer patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. RESULTS The average secondary doses of proton therapy for prostate cancer patients, measured 20-60 cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. CONCLUSIONS Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.


Surface & Coatings Technology | 2004

Localized corrosion mechanisms of the multilayered coatings related to growth defects

Sung Hwan Ahn; J. H. Lee; J.G. Kim; J.G. Han

Abstract Multilayered WC–Ti 1− x Al x N coatings were deposited on AISI D2 steel using cathodic arc deposition method. These coatings contain structural defects such as pores or pinholes. Thus, the substrate is not completely isolated from the corrosive environment. These growth defects in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion of the coatings was studied in deaerated 3.5 wt.% NaCl solution using classical electrochemical technique (potentiodynamic polarization test). Coating characteristics were examined by means of glow discharge optical emission spectroscopy, scanning electron microscopy, auger electron spectroscopy and transmission electron spectroscopy. The porosity was calculated from a result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the WC–Ti 0.6 Al 0.4 N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and reducing the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion reaction of coatings is caused by defects (pores, pinholes and crevices), coating delamination and galvanic effect between the droplet and the coating.


Surface & Coatings Technology | 2003

Corrosion behavior of PVD-grown WC–(Ti1−xAlx)N films in a 3.5% NaCl solution

Sung Hwan Ahn; Jung Ho Yoo; Yoon-Seok Choi; J.G. Kim; J.G. Han

Abstract WC–(Ti 1− x Al x )N coatings of stepwise changing Al concentration (WC–Ti 0.86 Al 0.14 N, WC–Ti 0.72 Al 0.28 N, and WC–Ti 0.58 Al 0.42 N) were deposited on AISI 1045 substrate by high-ionization sputtered PVD method. The Al concentration could be controlled by using evaporation source for Al and fixing the evaporation rate of the metals (WC alloy and Ti). The corrosion behavior of WC–(Ti 1− x Al x )N coatings in deaerated 3.5% NaCl solution was investigated by electrochemical corrosion tests and surface analyses. Particular attention was paid to the effects of Al target power density on the film properties related to the corrosion behavior. The measured galvanic corrosion currents between coating and substrate indicated that WC–Ti 0.72 Al 0.28 N coating showed the best resistance of the coating tested. The results of potentiodynamic polarization tests showed that this coating had passivation and lower porosity. This indicated that this coating is effective in improving corrosion resistance. In electrochemical impedance spectroscopy, the WC–Ti 0.72 Al 0.28 N coating showed one time constant loop and the increased polarization resistance of coating relative to other samples. The better corrosion performance of WC–Ti 0.72 Al 0.28 N coating is due to the modified compactness, porosity and adhesion of the coating layer.


International Journal of Radiation Oncology Biology Physics | 2009

MICROSCOPIC GOLD PARTICLE-BASED FIDUCIAL MARKERS FOR PROTON THERAPY OF PROSTATE CANCER

Young Kyung Lim; Jungwon Kwak; Dong Wook Kim; Dongho Shin; Myonggeun Yoon; Soah Park; Jin Sung Kim; Sung Hwan Ahn; J Shin; Se Byeong Lee; Sung Yong Park; Hong Ryeol Pyo; Dae Yong Kim; Kwan Ho Cho

PURPOSE We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. METHODS AND MATERIALS We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. RESULTS The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. CONCLUSION Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.


Radiation oncology journal | 2015

The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

Kwangzoo Chung; Youngyih Han; Jinsung Kim; Sung Hwan Ahn; Sang Gyu Ju; Sang Hoon Jung; Yoonsun Chung; Sungkoo Cho; Kwanghyun Jo; Eun Hyuk Shin; Chae-Seon Hong; Jung Suk Shin; Seyjoon Park; Dae-Hyun Kim; Hye Young Kim; Boram Lee; Gantaro Shibagaki; Hideki Nonaka; Kenzo Sasai; Yukio Koyabu; Changhoon Choi; Seung Jae Huh; Yong Chan Ahn; Hong Ryull Pyo; Do Hoon Lim; Hee Chul Park; Won Soon Park; Dong Ryul Oh; Jae Myung Noh; Jeong Il Yu

Purpose The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.


Surface & Coatings Technology | 2003

On the corrosion behavior of multilayered WC–Ti1−xAlxN coatings on AISI D2 steel

Sung Hwan Ahn; Jung Ho Yoo; J.G. Kim; J.G. Han

In the present work, multilayered coatings with alternate layers of WC-Ti and WC-Ti 1-x Al x N were deposited for use as wear-resistant and corrosion-resistant surfaces. Ti and TiN base layers were deposited on the substrate prior to the multilayers. WC-Ti 1-x Al x N coatings with variable Al content (i.e., Al target power density) were deposited onto a steel substrate (high-speed steel; HSS) by the cathodic arc deposition method. The Al content could be controlled using an evaporation source for Al and fixing the evaporation rate of the other target sources. Four kinds of WC-Ti 1-x Al x N coatings were prepared (WC-Ti 0.6 Al 0.4 N, WC-Ti 0.53 Al 0.47 N, WC-Ti 0.5 Al 0.5 N and WC-Ti 0.43 Al 0.57 N). The corrosion behavior of WC-Ti 1-x Al x N coatings in deaerated 3.5% NaCI solution was investigated by electrochemical corrosion tests and surface analyses. Particular attention was paid to the effects of Al content on the coating properties related to the corrosion behavior. The galvanic corrosion current measured between the coating and substrate showed a low value. The results of potentiodynamic polarization tests indicated that the WC-Ti 0.43 Al 0.57 N coating with lower porosity enhanced the corrosion resistance. In electrochemical impedance spectroscopy measurements, the WC-Ti 0.43 Al 0.57 N coating showed two time constants and decreased the charge transfer resistance of the coating (R et ). Multilayered coatings were analyzed by EDS and XRD techniques to evaluate the crystal structure and compound formation behavior. Surface and cross-sectional morphology of the films was observed using SEM. In addition, scratch tests were performed to measure film adhesion strength.


Medical Dosimetry | 2011

Prediction of Output Factor, Range, and Spread-Out Bragg Peak for Proton Therapy

Dong-Wook Kim; Young Kyung Lim; Sung Hwan Ahn; J Shin; Dongho Shin; M Yoon; Se Byeong Lee; Dae Yong Kim; Sung Yong Park

In proton therapy, patient quality assurance (QA) requires measuring the beam range, spread-out Bragg peak (SOBP), and output factor. If these values can be predicted by using sampling measurements or previous QA data to find the correlation between beam setup parameters and measured data, efforts expended on patient QA can be reduced. Using sampling data, we predicted the range, SOBP, and output factor of the proton beam. To obtain sampling data, we measured the range, SOBP, and output factor for 14 data points at each of 24-beam range options, from 4-28 cm. Prediction conformity was evaluated by the difference between predicted and measured patient QA data. Results indicated that for 60% of patients, the values could be predicted within 3% of dose uncertainty.


Medical Physics | 2015

Development of a 3D optical scanning-based automatic quality assurance system for proton range compensators

Min-Kyu Kim; Sang Gyu Ju; Kwangzoo Chung; Chae-Seon Hong; Jungkuk Kim; Jinsung Kim; Sung Hwan Ahn; Sang Hoon Jung; Youngyih Han; Yoonsun Chung; Sungkoo Cho; Dongho Shin; Doo Ho Choi

PURPOSE A new automatic quality assurance (AutoRCQA) system using a three-dimensional scanner (3DS) with system automation was developed to improve the accuracy and efficiency of the quality assurance (QA) procedure for proton range compensators (RCs). The system performance was evaluated for clinical implementation. METHODS The AutoRCQA system consists of a three-dimensional measurement system (3DMS) based on 3DS and in-house developed verification software (3DVS). To verify the geometrical accuracy, the planned RC data (PRC), calculated with the treatment planning system (TPS), were reconstructed and coregistered with the measured RC data (MRC) based on the beam isocenter. The PRC and MRC inner surfaces were compared with composite analysis (CA) using 3DVS, using the CA pass rate for quantitative analysis. To evaluate the detection accuracy of the system, the authors designed a fake PRC by artificially adding small cubic islands with side lengths of 1.5, 2.5, and 3.5 mm on the inner surface of the PRC and performed CA with the depth difference and distance-to-agreement tolerances of [1 mm, 1 mm], [2 mm, 2 mm], and [3 mm, 3 mm]. In addition, the authors performed clinical tests using seven RCs [computerized milling machine (CMM)-RCs] manufactured by CMM, which were designed for treating various disease sites. The systematic offsets of the seven CMM-RCs were evaluated through the automatic registration function of AutoRCQA. For comparison with conventional technique, the authors measured the thickness at three points in each of the seven CMM-RCs using a manual depth measurement device and calculated thickness difference based on the TPS data (TPS-manual measurement). These results were compared with data obtained from 3DVS. The geometrical accuracy of each CMM-RC inner surface was investigated using the TPS data by performing CA with the same criteria. The authors also measured the net processing time, including the scan and analysis time. RESULTS The AutoRCQA system accurately detected all fake objects in accordance with the given criteria. The median systematic offset of the seven CMM-RCs was 0.08 mm (interquartile range: -0.25 to 0.37 mm) and -0.08 mm (-0.58 to 0.01 mm) in the X- and Y-directions, respectively, while the median distance difference was 0.37 mm (0.23-0.94 mm). The median thickness difference of the TPS-manual measurement at points 1, 2, and 3 was -0.4 mm (-0.4 to -0.2 mm), -0.2 mm (-0.3 to 0.0 mm), and -0.3 mm (-0.6 to -0.1 mm), respectively, while the median difference of 3DMS was 0.0 mm (-0.1 to 0.2 mm), 0.0 mm (-0.1 to 0.3 mm), and 0.1 mm (-0.1 to 0.2 mm), respectively. Thus, 3DMS showed slightly better values compared to the manual measurements for points 1 and 3 in statistical analysis (p < 0.05). The average pass rate of the seven CMM-RCs was 97.97% ± 1.68% for 1-mm CA conditions, increasing to 99.98% ± 0.03% and 100% ± 0.00% for 2- and 3-mm CA conditions, respectively. The average net analysis time was 18.01 ± 1.65 min. CONCLUSIONS The authors have developed an automated 3DS-based proton RC QA system and verified its performance. The AutoRCQA system may improve the accuracy and efficiency of QA for RCs.


Journal of Applied Clinical Medical Physics | 2016

Secondary cancer-incidence risk estimates for external radiotherapy and high-dose-rate brachytherapy in cervical cancer: phantom study

Boram Lee; Sung Hwan Ahn; Hye Young Kim; Jaeman Son; Jiwon Sung; Youngyih Han; Seung Jae Huh; Jin Sung Kim; Dong Wook Kim; Myonggeun Yoon

This study was designed to estimate radiation-induced secondary cancer risks from high-dose-rate (HDR) brachytherapy and external radiotherapy for patients with cervical cancer based on measurements of doses absorbed by various organs. Organ doses from HDR brachytherapy and external radiotherapy were measured using glass rod dosimeters. Doses to out-of-field organs were measured at various locations inside an anthropomorphic phantom. Brachytherapy-associated organ doses were measured using a specialized phantom that enabled applicator insertion, with the pelvis portion of the existing anthropomorphic phantom replaced by this new phantom. Measured organ doses were used to calculate secondary cancer risk based on Biological Effects of Ionizing Radiation (BEIR) VII models. In both treatment modalities, organ doses per prescribed dose (PD) mostly depended on the distance between organs. The locations showing the highest and lowest doses were the right kidney (external radiotherapy: 215.2 mGy; brachytherapy: 655.17 mGy) and the brain (external radiotherapy: 15.82 mGy; brachytherapy: 2.49 mGy), respectively. Organ doses to nearby regions were higher for brachytherapy than for external beam therapy, whereas organ doses to distant regions were higher for external beam therapy. Organ doses to distant treatment regions in external radiotherapy were due primarily to out-of-field radiation resulting from scattering and leakage in the gantry head. For brachytherapy, the highest estimated lifetime attributable risk per 100,000 population was to the stomach (88.6), whereas the lowest risks were to the brain (0.4) and eye (0.4); for external radiotherapy, the highest and lowest risks were to the thyroid (305.1) and brain (2.4). These results may help provide a database on the impact of radiotherapy-induced secondary cancer incidence during cervical cancer treatment, as well as suggest further research on strategies to counteract the risks of radiotherapy-associated secondary malignancies. PACS number(s): 87.52.-g, 87.52.Px, 87.53.Dq, 87.53.Jw.This study was designed to estimate radiation‐induced secondary cancer risks from high‐dose‐rate (HDR) brachytherapy and external radiotherapy for patients with cervical cancer based on measurements of doses absorbed by various organs. Organ doses from HDR brachytherapy and external radiotherapy were measured using glass rod dosimeters. Doses to out‐of‐field organs were measured at various locations inside an anthropomorphic phantom. Brachytherapy‐associated organ doses were measured using a specialized phantom that enabled applicator insertion, with the pelvis portion of the existing anthropomorphic phantom replaced by this new phantom. Measured organ doses were used to calculate secondary cancer risk based on Biological Effects of Ionizing Radiation (BEIR) VII models. In both treatment modalities, organ doses per prescribed dose (PD) mostly depended on the distance between organs. The locations showing the highest and lowest doses were the right kidney (external radiotherapy: 215.2 mGy; brachytherapy: 655.17 mGy) and the brain (external radiotherapy: 15.82 mGy; brachytherapy: 2.49 mGy), respectively. Organ doses to nearby regions were higher for brachytherapy than for external beam therapy, whereas organ doses to distant regions were higher for external beam therapy. Organ doses to distant treatment regions in external radiotherapy were due primarily to out‐of‐field radiation resulting from scattering and leakage in the gantry head. For brachytherapy, the highest estimated lifetime attributable risk per 100,000 population was to the stomach (88.6), whereas the lowest risks were to the brain (0.4) and eye (0.4); for external radiotherapy, the highest and lowest risks were to the thyroid (305.1) and brain (2.4). These results may help provide a database on the impact of radiotherapy‐induced secondary cancer incidence during cervical cancer treatment, as well as suggest further research on strategies to counteract the risks of radiotherapy‐associated secondary malignancies. PACS number(s): 87.52.‐g, 87.52.Px, 87.53.Dq, 87.53.Jw

Collaboration


Dive into the Sung Hwan Ahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se Byeong Lee

Electronics and Telecommunications Research Institute

View shared research outputs
Top Co-Authors

Avatar

Doo Ho Choi

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Gyu Ju

Samsung Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge