Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sang Gyu Ju is active.

Publication


Featured researches published by Sang Gyu Ju.


Medical Physics | 2002

Film dosimetry for intensity modulated radiation therapy: Dosimetric evaluation

Sang Gyu Ju; Yong Chan Ahn; Seung Jae Huh; Inhwan Jason Yeo

X-ray film has been used for the dosimetry of intensity modulated radiation therapy (IMRT). However, the over-response of the film to low-energy photons is a significant problem in photon beam dosimetry, especially in regions outside penumbra. In IMRT, the radiation field consists of multiple small fields and their outside-penumbra regions; thus, the film dosimetry, for it involves the source of over-response in its radiation field. In this study we aim to verify and possibly improve film dosimetry for IMRT. Two types of modulated beams were constructed by combining five to seven different static radiation fields using 6 MV x rays. For verifying film dosimetry, x-ray films and an ion chamber were used to measure dose profiles at various depths in a phantom. The film setups include both parallel and perpendicular arrangements against the beam incident direction. In addition, to reduce an over-response, we placed 0.01 in. (0.25 mm) thick lead filters on both sides of the film. Compared with ion-chamber measurement, measured dose profiles showed the film over-response at outside-penumbra and low-dose regions. The error increased with depths and approached 15% as a maximum for the field size of 15 cm x 15 cm at 10 cm depth. The use of filters reduced the error down to 3%. In this study we demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy photons, with the error most transparent in the low-dose region. The use of filters could enhance the accuracy in film dosimetry for IMRT. In this regard, the use of an optimal filter condition is recommended.


International Journal of Radiation Oncology Biology Physics | 2014

New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

Sang Gyu Ju; Min Kyu Kim; Chae-Seon Hong; Jin Sung Kim; Youngyih Han; Doo Ho Choi; Dongho Shin; Se Byeong Lee

PURPOSEnA new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC_3DP) were compared with those of a conventional RC (RC_CMM) manufactured by a computerized milling machine (CMM).nnnMETHODS AND MATERIALSnAn RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC_3DP was printed with ultraviolet curable acrylic plastic, and an RC_CMM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1xa0mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2xa0RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency.nnnRESULTSnThe pass rates for the CA test were 99.5% and 92.5% for RC_3DP and RC_CMM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC_3DP and RC_CMM were about 18 and 3xa0hours, respectively.nnnCONCLUSIONSnThe physical accuracy and dosimetric characteristics of RC_3DP were comparable with those of the conventional RC_CMM, and significant system minimization was provided.


Radiation oncology journal | 2015

The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

Kwangzoo Chung; Youngyih Han; Jinsung Kim; Sung Hwan Ahn; Sang Gyu Ju; Sang Hoon Jung; Yoonsun Chung; Sungkoo Cho; Kwanghyun Jo; Eun Hyuk Shin; Chae-Seon Hong; Jung Suk Shin; Seyjoon Park; Dae-Hyun Kim; Hye Young Kim; Boram Lee; Gantaro Shibagaki; Hideki Nonaka; Kenzo Sasai; Yukio Koyabu; Changhoon Choi; Seung Jae Huh; Yong Chan Ahn; Hong Ryull Pyo; Do Hoon Lim; Hee Chul Park; Won Soon Park; Dong Ryul Oh; Jae Myung Noh; Jeong Il Yu

Purpose The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.


Medical Physics | 2014

Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer.

Chae-Seon Hong; Sang Gyu Ju; Min-Kyu Kim; Jung-in Kim; Jin Man Kim; Tae-Suk Suh; Youngyih Han; Yong Chan Ahn; Doo Ho Choi; Heerim Nam; Hee Chul Park

PURPOSEnThe authors evaluated the effects of multileaf collimator (MLC) leaf width (2.5 vs. 5 mm) on dosimetric parameters and delivery efficiencies of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancers.nnnMETHODSnThe authors employed two types of mock phantoms: large-sized head and neck (LH&N) and small-sized C-shape (C-shape) phantoms. Step-and-shoot IMRT (S&S_IMRT) and VMAT treatment plans were designed with 2.5- and 5.0-mm MLC for both C-shape and LH&N phantoms. Their dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), the dose to organs at risk (OARs), and the dose-spillage volume. To analyze the effects of the field and arc numbers, 9-field IMRT (9F-IMRT) and 13-field IMRT (13F-IMRT) plans were established for S&S_IMRT. For VMAT, single arc (VMAT1) and double arc (VMAT2) plans were established. For all plans, dosimetric verification was performed using the phantom to examine the relationship between dosimetric errors and the two leaf widths. Delivery efficiency of the two MLCs was compared in terms of beam delivery times, monitor units (MUs) per fraction, and the number of segments for each plan.nnnRESULTSn2.5-mm MLC showed better dosimetric characteristics in S&S_IMRT and VMAT for C-shape, providing better CI for PTV and lower spinal cord dose and high and intermediate dose-spillage volume as compared with the 5-mm MLC (p < 0.05). However, no significant dosimetric benefits were provided by the 2.5-mm MLC for LH&N (p > 0.05). Further, beam delivery efficiency was not observed to be significantly associated with leaf width for either C-shape or LH&N. However, MUs per fraction were significantly reduced for the 2.5-mm MLC for the LH&N. In dosimetric error analysis, absolute dose evaluations had errors of less than 3%, while the Gamma passing rate was greater than 95% according to the 3%/3 mm criteria. There were no significant differences in dosimetric error between the 2.5- and 5-mm MLCs.nnnCONCLUSIONSnAs compared with MLC of 5-mm leaf widths, MLC with finer leaf width (2.5-mm) can provide better dosimetric outcomes in IMRT for C-shape. However, the MLC leaf width may only have minor effects on dosimetric characteristics in IMRT for LH&N. The results of the present study will serve as a useful assessment standard when assigning or introducing equipment for the treatment of H&N cancers.


International Journal of Radiation Oncology Biology Physics | 2012

18F-fluorodeoxyglucose positron emisson tomography/computed tomography guided conformal brachytherapy for cervical cancer.

Heerim Nam; Seung Jae Huh; Sang Gyu Ju; Won Soon Park; Jeong Eun Lee; Joon Young Choi; Byung-Tae Kim; Chan Kyo Kim; Byung Kwan Park

PURPOSEnTo evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer.nnnMETHODS AND MATERIALSnPretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan).nnnRESULTSnThe median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUV(max)) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%).nnnCONCLUSIONSnIn this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.


Medical Physics | 2010

Comparison of film dosimetry techniques used for quality assurance of intensity modulated radiation therapy

Sang Gyu Ju; Youngyih Han; Oyeon Kum; Kwang-Ho Cheong; Eun Hyuk Shin; Jung Suk Shin; Jin Sung Kim; Yong Chan Ahn

PURPOSEnAccurate dosimetry is essential to ensure the quality of advanced radiation treatments, such as intensity modulated radiation therapy (IMRT). Therefore, a comparison study was conducted to assess the accuracy of various film dosimetry techniques that are widely used in clinics.nnnMETHODSnA simulated IMRT plan that produced an inverse pyramid dose distribution in a perpendicular plane of the beam axis was designed with 6 MV x rays to characterize the large contribution of scattered photons to low dose regions. Three film dosimetry techniques, EDR2, EDR2 with low-energy photon absorption lead filters (EDR2 WF), and GafChromic® EBT, were compared to ionization chamber measurements as well as Monte Carlo (MC) simulations. The accuracy of these techniques was evaluated against the ionization chamber data. Two-dimensional comparisons with MC simulation results were made by computing the gamma index (γ) with criteria ranging from 2% of dose difference or 2 mm of distance to agreement (2%/2 mm) to 4%/4 mm on the central vertical plane (20×20cm2) of a square solid water phantom. Depth doses and lateral profiles at depths of 5, 10, and 15 cm were examined to characterize the deviation of film measurements and MC predictions from ionization chamber measurements.nnnRESULTSnIn depth dose comparisons, the deviation between the EDR2 films was 9% in the low dose region and 5% in high dose region, on average. With lead filters, the average deviation was reduced to -1.3% and -0.3% in the low dose and high dose regions, respectively. EBT film results agreed within 1.5% difference on average with ionization chamber measurements in low and high dose regions. In two-dimensional comparisons with MC simulation, EDR2 films passed gamma tests with a 2%/2 mm criterion only in the high dose region (γ⩽1, total of 63.06% of the tested region). In the low dose region, EDR2 films passed gamma tests with 3%/3 mm criterion (γ⩽1, total of 98.4% of the tested region). For EDR2 WF and GafChromic® EBT films, gamma tests with a 2% /2 mm criterion (γ⩽1) in the tested area was 97.3% and 96.8% of the tested region, respectively.nnnCONCLUSIONSnThe EDR2 film WF and GafChromic® EBT film achieved an average accuracy level of 1.5% against an ionization chamber. These two techniques agreed with the MC prediction in 2%/2mm criteria evaluated by the gamma index, whereas EDR2 without filters achieved an accuracy level of 3%/3 mm with the decision criteria of agreement greater than 95% of the tested region. The overall results will provide a useful quantitative reference for IMRT verifications.


Journal of Applied Clinical Medical Physics | 2014

Evaluation of radiation dose to organs during kilovoltage cone-beam computed tomography using Monte Carlo simulation

Kihong Son; Seungryong Cho; Jin Sung Kim; Youngyih Han; Sang Gyu Ju; Doo Ho Choi

Image‐guided techniques for radiation therapy have improved the precision of radiation delivery by sparing normal tissues. Cone‐beam computed tomography (CBCT) has emerged as a key technique for patient positioning and target localization in radiotherapy. Here, we investigated the imaging radiation dose delivered to radiosensitive organs of a patient during CBCT scan. The 4D extended cardiac‐torso (XCAT) phantom and Geant4 Application for Tomographic Emission (GATE) Monte Carlo (MC) simulation tool were used for the study. A computed tomography dose index (CTDI) standard polymethyl methacrylate (PMMA) phantom was used to validate the MC‐based dosimetric evaluation. We implemented an MC model of a clinical on‐board imager integrated with the Trilogy accelerator. The MC models accuracy was validated by comparing its weighted CTDI (CTDIw) values with those of previous studies, which revealed good agreement. We calculated the absorbed doses of various human organs at different treatment sites such as the head‐and‐neck, chest, abdomen, and pelvis regions, in both standard CBCT scan mode (125 kVp, 80 mA, and 25 ms) and low‐dose scan mode (125 kVp, 40 mA, and 10 ms). In the former mode, the average absorbed doses of the organs in the head and neck and chest regions ranged 4.09‐8.28 cGy, whereas those of the organs in the abdomen and pelvis regions were 4.30‐7.48 cGy. In the latter mode, the absorbed doses of the organs in the head and neck and chest regions ranged 1.61‐1.89 cGy, whereas those of the organs in the abdomen and pelvis region ranged between 0.79‐1.85 cGy. The reduction in the radiation dose in the low‐dose mode compared to the standard mode was about 20%, which is in good agreement with previous reports. We opine that the findings of this study would significantly facilitate decisions regarding the administration of extra imaging doses to radiosensitive organs. PACS number: 87.57.uq


Journal of Radiation Research | 2013

Different effects of bladder distention on point A-based and 3D-conformal intracavitary brachytherapy planning for cervical cancer

Sang Gyu Ju; Seung Jae Huh; Jung Suk Shin; Won Soon Park; Heerim Nam; Sunhyun Bae; Dong Gyun Oh; Chae-Seon Hong; Jin Sung Kim; Youngyih Han; Doo Ho Choi

This study sought to evaluate the differential effects of bladder distention on point A-based (AICBT) and three-dimensional conformal intracavitary brachytherapy (3D-ICBT) planning for cervical cancer. Two sets of CT scans were obtained for ten patients to evaluate the effect of bladder distention. After the first CT scan, with an empty bladder, a second set of CT scans was obtained with the bladder filled. The clinical target volume (CTV), bladder, rectum, and small bowel were delineated on each image set. The AICBT and 3D-ICBT plans were generated, and we compared the different planning techniques with respect to the dose characteristics of CTV and organs at risk. As a result of bladder distention, the mean dose (D50) was decreased significantly and geometrical variations were observed in the bladder and small bowel, with acceptable minor changes in the CTV and rectum. The average D2 cm3and D1 cm3showed a significant change in the bladder and small bowel with AICBT; however, no change was detected with the 3D-ICBT planning. No significant dose change in the CTV or rectum was observed with either the AICBT or the 3D-ICBT plan. The effect of bladder distention on dosimetrical change in 3D-ICBT planning appears to be minimal, in comparison with AICBT planning.


Radiation oncology journal | 2011

Analysis of changes in dose distribution due to respiration during IMRT

Jung Suk Shin; Eunhyuk Shin; Youngyih Han; Sang Gyu Ju; Jin Sung Kim; Sung Hwan Ahn; Tae Gyu Kim; Hee Chul Park; Young Chan Ahn; Doo Ho Choi

Purpose Intensity modulated radiation therapy (IMRT) is a high precision therapy technique that can achieve a conformal dose distribution on a given target. However, organ motion induced by respiration can result in significant dosimetric error. Therefore, this study explores the dosimetric error that result from various patterns of respiration. Materials and Methods Experiments were designed to deliver a treatment plan made for a real patient to an in-house developed motion phantom. The motion pattern; the amplitude and period as well as inhale-exhale period, could be controlled by in-house developed software. Dose distribution was measured using EDR2 film and analysis was performed by RIT113 software. Three respiratory patterns were generated for the purpose of this study; first the even inhale-exhale pattern, second the slightly long exhale pattern (0.35 seconds longer than inhale period) named general signal pattern, and third a long exhale pattern (0.7 seconds longer than inhale period). One dimensional dose profile comparisons and gamma index analysis on 2 dimensions were performed Results In one-dimensional dose profile comparisons, 5% in the target and 30% dose difference at the boundary were observed in the long exhale pattern. The center of high dose region in the profile was shifted 1 mm to inhale (caudal) direction for the even inhale-exhale pattern, 2 mm and 5 mm shifts to exhale (cranial) direction were observed for slightly long exhale pattern and long exhale pattern, respectively. The areas of gamma index >1 were 11.88%, 15.11%, and 24.33% for even inhale-exhale pattern, general pattern, and long exhale pattern, respectively. The long exhale pattern showed largest errors. Conclusion To reduce the dosimetric error due to respiratory motions, controlling patients breathing to be closer to even inhaleexhale period is helpful with minimizing the motion amplitude.


Medical Physics | 2012

Development of a video‐guided real‐time patient motion monitoring system

Sang Gyu Ju; Woong Huh; Chae-Seon Hong; Jin Sung Kim; Jung Suk Shin; Eunhyuk Shin; Youngyih Han; Yong Chan Ahn; Hee Chul Park; Doo Ho Choi

PURPOSEnThe authors developed a video image-guided real-time patient motion monitoring (VGRPM) system using PC-cams, and its clinical utility was evaluated using a motion phantom.nnnMETHODSnThe VGRPM system has three components: (1) an image acquisition device consisting of two PC-cams, (2) a main control computer with a radiation signal controller and warning system, and (3) patient motion analysis software developed in-house. The intelligent patient motion monitoring system was designed for synchronization with a beam on/off trigger signal in order to limit operation to during treatment time only and to enable system automation. During each treatment session, an initial image of the patient is acquired as soon as radiation starts and is compared with subsequent live images, which can be acquired at up to 30 fps by the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ(movement)) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.3, 0.5, and 1.0 cm for 1 and 2 s, respectively, was used to evaluate the system performance. The authors measured optimal δ(movement) for clinical use, the minimum distance that can be detected with this system, and the response time of the whole system using a video analysis technique. The stability of the system in a linear accelerator unit was evaluated for a period of 6 months.nnnRESULTSnAs a result of the moving phantom test, the δ(movement) for detection of all simulated phantom motion except the 0.1 cm movement was determined to be 0.2% of total number of pixels in the initial image. The system can detect phantom motion as small as 0.2 cm. The measured response time from the detection of phantom movement to generation of the warning signal was 0.1 s. No significant functional disorder of the system was observed during the testing period.nnnCONCLUSIONSnThe VGRPM system has a convenient design, which synchronizes initiation of the analysis with a beam on/off signal from the treatment machine and may contribute to a reduction in treatment error due to patient motion and increase the accuracy of treatment dose delivery.

Collaboration


Dive into the Sang Gyu Ju's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doo Ho Choi

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do Hoon Lim

Samsung Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge