Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung-il Yoon is active.

Publication


Featured researches published by Sung-il Yoon.


Biochemical and Biophysical Research Communications | 2014

Crystal structure of FliC flagellin from Pseudomonas aeruginosa and its implication in TLR5 binding and formation of the flagellar filament

Wan Seok Song; Sung-il Yoon

Pseudomonas aeruginosa is one of leading opportunistic pathogens in humans and its movement is driven by a flagellar filament that is constituted through the polymerization of a single protein, FliC flagellin (paFliC). paFliC is an essential virulence factor for the colonization of P. aeruginosa. paFliC activates innate immune responses via its recognition by Toll-like receptor 5 (TLR5) and adaptive immunity in the host. Thus, paFliC has been a vaccine candidate to prevent P. aeruginosa infection, particularly for cystic fibrosis patients. To provide structural information on paFliC and its flagellar filament, we have determined the crystal structure of paFliC, which contains the conserved D1 and variable D2 domains, at 2.1 Å resolution. As observed for Salmonella FliC, the paFliC D1 domain is folded into a rod-shaped structure, and paFliC was demonstrated by gel filtration and native PAGE analyses to directly interact with TLR5. Moreover, a structural model of the paFliC-TLR5 complex suggests that paFliC D1 would provide major TLR5-binding sites, similar to Salmonella FliC. In contrast to the D1 domain, the paFliC D2 domain exhibits a unique structure of two β-sheets and one α-helix that has not been found in other flagellins. An in silico construction of a flagellar filament based on the packing of paFliC in the crystal suggests that the D2 domain would be exposed to solution and could play an important role in immunogenicity. Our biophysical and structure-based modeling study on paFliC, the paFliC-TLR5 complex, and the paFliC filament could contribute to the improvement of vaccine design to control P. aeruginosa infection.


Scientific Reports | 2017

A conserved TLR5 binding and activation hot spot on flagellin

Wan Seok Song; Ye Ji Jeon; Byeol Namgung; Minsun Hong; Sung-il Yoon

Flagellin is a bacterial protein that polymerizes into the flagellar filament and is essential for bacterial motility. When flagellated bacteria invade the host, flagellin is recognized by Toll-like receptor 5 (TLR5) as a pathogen invasion signal and eventually evokes the innate immune response. Here, we provide a conserved structural mechanism by which flagellins from Gram-negative γ-proteobacteria and Gram-positive Firmicutes bacteria bind and activate TLR5. The comparative structural analysis using our crystal structure of a complex between Bacillus subtilis flagellin (bsflagellin) and TLR5 at 2.1 Å resolution, combined with the alanine scanning analysis of the binding interface, reveals a common hot spot in flagellin for TLR5 activation. An arginine residue (bsflagellin R89) of the flagellin D1 domain and its adjacent residues (bsflagellin E114 and L93) constitute a hot spot that provides shape and chemical complementarity to a cavity generated by the loop of leucine-rich repeat 9 in TLR5. In addition to the flagellin D1 domain, the D0 domain also contributes to TLR5 activity through structurally dispersed regions, but not a single focal area. These results establish the groundwork for the future design of flagellin-based therapeutics.


Biochemical and Biophysical Research Communications | 2015

Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation.

Wan Seok Song; Mi Sun Nam; Byeol Namgung; Sung-il Yoon

Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis.


Scientific Reports | 2017

Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation

Huijeong Ahn; Seung Goo Kang; Sung-il Yoon; Hyun-Jeong Ko; Pyeung-Hyeun Kim; Eui-Ju Hong; Beum-Soo An; Eunsong Lee; Geun-Shik Lee

Methylene blue (MB), which has antioxidant, anti-inflammatory, neuroprotective, and mitochondria protective effects, has been widely used as a dye and medication. However, the effect of MB on inflammasome activation has not yet been studied. Inflammasomes are multi-protein complexes that induce maturation of interleukins (ILs)-1β and -18 as well as caspase-1-mediated cell death, known as pyroptosis. Dysregulation of inflammasomes causes several diseases such as type 2 diabetes, Alzheimer’s disease, and gout. In this study, we assess the effect of MB on inflammasome activation in macrophages. As the result, MB attenuated activation of canonical inflammasomes such as NLRP3, NLRC4, and AIM2 as well as non-canonical inflammasome activation. In addition, MB inhibited upstream signals such as inflammasome assembly, phagocytosis, and gene expression of inflammasome components via inhibition of NF-κB signaling. Furthermore, MB reduced the activity of caspase-1. The anti-inflammasome properties of MB were further confirmed in mice models. Thus, we suggest that MB is a broad-spectrum anti-inflammasome candidate molecule.


Scientific Reports | 2017

Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production

Huijeong Ahn; Eunsaem Jeon; Jin-Chul Kim; Seung Goo Kang; Sung-il Yoon; Hyun-Jeong Ko; Pyeung-Hyeun Kim; Geun-Shik Lee

Lentinan extracted from shiitake (Lentinula edodes) is a β-glucan that has been reported as an intravenous anti-tumor polysaccharide via enhancement of the host immune system. In this study, we determined the effect of lentinan on inflammasome activation, a multi-protein platform, in myeloid cells. Mouse bone marrow-derived macrophages were treated with lentinan with/without inflammasome triggers, and maturation of interleukin (IL)-1β, IL-18, or caspase-1 was measured as a readout of inflammasome activation. As a result, lentinan selectively inhibited absent in melanoma 2 (AIM2) inflammasome activation. In addition, lentinan up-regulated pro-inflammatory cytokines and induced expression of inflammasome-related genes through toll-like receptor 4 signaling. Furthermore, we assessed the effect of lentinan on mice treated with Listeria monocytogenes or lipopolysaccharide as an AIM2 or non-canonical inflammasome-mediated model. Lentinan attenuated IL-1β secretion resulting from Listeria-mediated AIM2 inflammasome activation and reduced endotoxin lethality via inhibition of non-canonical inflammasome activation. Thus, lentinan is suggested as an anti-AIM2 and anti-non-canonical inflammasome candidate despite its up-regulation of cytokine expression.


Cellular & Molecular Immunology | 2018

Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation

Huijeong Ahn; Seung Goo Kang; Sung-il Yoon; Pyeung-Hyeun Kim; Doo Kim; Geun-Shik Lee

Poly-gamma-glutamic acid (γ-PGA) is a natural, edible and non-toxic polymer synthesized by Bacillus subtilis and is suggested as a safe biomaterial for the use in hydrogels and vaccine adjuvants. However, the effect of γ-PGA on inflammasome activation has not yet been studied in macrophages. Inflammasomes, which are intracellular multi-protein complexes, promote acute and chronic inflammation via interleukin-1β or interleukin-18 maturation, and they are known targets for metabolic syndromes and cancer. In this study, we observed that γ-PGA attenuated NLRP3, NLRC4 and AIM2 inflammasome activation, whereas it upregulated pro-inflammatory cytokine expression in human and murine macrophages. Although γ-PGA had conflicting effects on cytokine production and maturation, it clearly alleviated the severity of lipopolysaccharide-induced endotoxin shock in an animal model. Thus, we suggest γ-PGA as a candidate to control inflammasome-mediated disorders.


Journal of Molecular Biology | 2017

Self-Oligomerizing Structure of the Flagellar Cap Protein FliD and Its Implication in Filament Assembly.

Wan Seok Song; So Yeon Cho; Ho Jeong Hong; Sun Cheol Park; Sung-il Yoon

FliD is a self-oligomerizing structural protein that caps the growing end of the bacterial flagellar filament. FliD also plays a key role in the flagellar system by continuously adding a new flagellin protein to the tip of the filament. To structurally characterize FliD oligomerization and to provide a FliD-mediated flagellin polymerization mechanism, we have determined the crystal structures of FliD proteins from Escherichia coli and Salmonella enterica serovar Typhimurium (ecFliD and stFliD, respectively). ecFliD consists of three domains (D1, D2, and D3) and forms a hexamer plate of the D2 and D3 domains that resembles a six-pointed star with legs consisting of the D1 domain. In contrast, the D2 and D3 domains of stFliD assemble into a pentamer as a five-pointed star plate. Despite their distinct oligomeric states, ecFliD and stFliD engage a common molecular surface for oligomerization. FliD also features interdomain and intersubunit flexibility, suggesting that FliD reorganizes its domains and adjacent subunits depending on the FliD binding partner. The similarity of the FliD shape to flagellin and the structural dynamics of FliD led us to propose a FliD-catalyzed filament elongation mechanism. In this model, FliD occupies a position in place of a nascent flagellin until the flagellin reaches the growing end of the filament, and then, FliD moves aside to repeat the positional replacement.


Journal of Structural Biology | 2016

Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase.

Ye Ji Jeon; Sun Cheol Park; Wan Seok Song; Ok-Hee Kim; Byung-Chul Oh; Sung-il Yoon

The optimal balance of cellular nucleotides and the efficient elimination of non-canonical nucleotides are critical to avoiding erroneous mutation during DNA replication. One such mechanism involves the degradation of excessive or abnormal nucleotides by nucleotide-hydrolyzing enzymes. YpgQ contains the histidine-aspartate (HD) domain that is involved in the hydrolysis of nucleotides or nucleic acids, but the enzymatic activity and substrate specificity of YpgQ have never been characterized. Here, we unravel the catalytic activity and structural features of YpgQ to report the first Mn(2+)-dependent pyrophosphohydrolase that hydrolyzes (deoxy)ribonucleoside triphosphate [(d)NTP] to (deoxy)ribonucleoside monophosphate and pyrophosphate using the HD domain. YpgQ from Bacillus subtilis (bsYpgQ) displays a helical structure and assembles into a unique dimeric architecture that has not been observed in other HD domain-containing proteins. Each bsYpgQ monomer accommodates a metal ion and a nucleotide substrate in a cavity located between the N- and C-terminal lobes. The metal cofactor is coordinated by the canonical residues of the HD domain, namely, two histidine residues and two aspartate residues, and is positioned in close proximity to the β-phosphate group of the nucleotide, allowing us to propose a nucleophilic attack mechanism for the nucleotide hydrolysis reaction. YpgQ enzymes from other bacterial species also catalyze pyrophosphohydrolysis but exhibit different substrate specificity. Comparative structural and mutational studies demonstrated that residues outside the major substrate-binding site of bsYpgQ are responsible for the species-specific substrate preference. Taken together, our structural and biochemical analyses highlight the substrate-recognition mode and catalysis mechanism of YpgQ in pyrophosphohydrolysis.


Nature Communications | 2018

Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing

Soon Hee Kim; Yeung Kyu Yeon; Jung Min Lee; Janet Ren Chao; Young Jin Lee; Ye Been Seo; Md. Tipu Sultan; Ok Joo Lee; Ji Seung Lee; Sung-il Yoon; In-Sun Hong; Gilson Khang; Sang Jin Lee; James J. Yoo; Chan Hum Park

Although three-dimensional (3D) bioprinting technology has gained much attention in the field of tissue engineering, there are still several significant engineering challenges to overcome, including lack of bioink with biocompatibility and printability. Here, we show a bioink created from silk fibroin (SF) for digital light processing (DLP) 3D bioprinting in tissue engineering applications. The SF-based bioink (Sil-MA) was produced by a methacrylation process using glycidyl methacrylate (GMA) during the fabrication of SF solution. The mechanical and rheological properties of Sil-MA hydrogel proved to be outstanding in experimental testing and can be modulated by varying the Sil-MA contents. This Sil-MA bioink allowed us to build highly complex organ structures, including the heart, vessel, brain, trachea and ear with excellent structural stability and reliable biocompatibility. Sil-MA bioink is well-suited for use in DLP printing process and could be applied to tissue and organ engineering depending on the specific biological requirements.Although 3D bioprinting technology has gained much attention in the field of tissue engineering, there are still several significant challenges that need to be overcome. Here, the authors present silk fibroin bioink with printability and biocompatibility suited for digital light processing 3D printing.


Biochemical and Biophysical Research Communications | 2016

Structural and biochemical characterization of the Bacillus cereus 3-hydroxyisobutyrate dehydrogenase

Sun Cheol Park; Pyeung-Hyeun Kim; Geun-Shik Lee; Seung Goo Kang; Hyun-Jeong Ko; Sung-il Yoon

The 3-hydroxyisobutyrate dehydrogenase (HIBADH) family catalyzes the NAD(+)- or NADP(+)-dependent oxidation of various β-hydroxyacid substrates into their cognate semialdehydes for diverse metabolic pathways. Because HIBADH group members exhibit different substrate specificities, the substrate-recognition mode of each enzyme should be individually characterized. In the current study, we report the biochemical and structural analysis of a HIBADH group enzyme from Bacillus cereus (bcHIBADH). bcHIBADH mediates a dehydrogenation reaction on S-3-hydroxyisobutyrate substrate with high catalytic efficiency in an NAD(+)-dependent manner; it also oxidizes l-serine and 3-hydroxypropionate with lower activity. bcHIBADH consists of two domains and is further assembled into a functional dimer rather than a tetramer that has been commonly observed in other prokaryotic HIBADH group members. In the bcHIBADH structure, the interdomain cleft forms a putative active site and simultaneously accommodates both an NAD(+) cofactor and a substrate mimic. Our structure-based comparative analysis highlights structural motifs that are important in the cofactor and substrate recognition of the HIBADH group.

Collaboration


Dive into the Sung-il Yoon's collaboration.

Top Co-Authors

Avatar

Wan Seok Song

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Geun-Shik Lee

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Pyeung-Hyeun Kim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Hyun-Jeong Ko

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Seung Goo Kang

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Sun Cheol Park

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Huijeong Ahn

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Byeol Namgung

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ho Jeong Hong

Kangwon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge