Sungmi Park
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sungmi Park.
Current Medicinal Chemistry | 2014
Sungmi Park; Udayakumar Karunakaran; Nam Ho Jeoung; Jae-Han Jeon; Inkyu Lee
Reactive oxygen species and reactive nitrogen species promote endothelial dysfunction in old age and contribute to the development of cardiovascular diseases such as atherosclerosis, diabetes, and hypertension. α-Lipoic acid was identified as a catalytic agent for oxidative decarboxylation of pyruvate and α-ketoglutarate in 1951, and it has been studied intensively by chemists, biologists, and clinicians who have been interested in its role in energetic metabolism and protection from reactive oxygen species-induced mitochondrial dysfunction. Consequently, many biological effects of α-lipoic acid supplementation can be attributed to the potent antioxidant properties of α-lipoic acid and dihydro α-lipoic acid. The reducing environments inside the cell help to protect from oxidative damage and the reduction-oxidation status of α-lipoic acid is dependent upon the degree to which the cellular components are found in the oxidized state. Although healthy young humans can synthesize enough α-lipoic acid to scavenge reactive oxygen species and enhance endogenous antioxidants like glutathione and vitamins C and E, the level of α-lipoic acid significantly declines with age and this may lead to endothelial dysfunction. Furthermore, many studies have reported α-lipoic acid can regulate the transcription of genes associated with anti-oxidant and anti-inflammatory pathways. In this review, we will discuss recent clinical studies that have investigated the beneficial effects of α-lipoic acid on endothelial dysfunction and propose possible mechanisms involved.
Vascular Pharmacology | 2014
Chae-Myeong Ha; Sungmi Park; Young-Keun Choi; Ji-Yun Jeong; Chang Joo Oh; Kwi-Hyun Bae; Sun Joo Lee; Ji-Hyun Kim; Keun-Gyu Park; Do Youn Jun; Inkyu Lee
Dimethyl fumarate (DMF) has several pharmacological benefits including immunomodulation and prevention of fibrosis, which are dependent on the NF-E2-related factor 2 (Nrf2) antioxidant pathways. Therefore, we hypothesized that DMF could attenuate vascular calcification via Nrf2 activation. Vascular calcification induced by hyperphosphataemia was significantly inhibited by DMF in vascular smooth muscle cells (VSMCs) in a dose-dependent manner. DMF-mediated Nrf2 upregulation was accompanied by the reduced expressions of genes related with osteoblast-like phenotype based on promoter activity, mRNA and protein expression, and von Kossa staining. Likewise, Nrf2 overexpression significantly decreased the formation of calcium deposit similar to the level of osteogenic staining in VSMCs, and DMF with Nrf2 knockdown failed to attenuate hyperphosphatemia induced vascular calcification. Furthermore, DMF significantly attenuated the calcification of ex vivo ring culture from both rat common carotid artery and mouse thoracic aorta as well as in vivo mouse model of Vitamin D3-induced calcification consistent with the increased Nrf2 protein levels in early stage of calcification by DMF. In conclusion, our data support that DMF stimulates Nrf2 activity to attenuate hyperphosphatamia in vitro or Vitamin D3-induced in vivo vascular calcification, which would be a beneficial effect on vascular diseases induced by oxidative stress such as vascular calcification.
Redox biology | 2014
Chang Joo Oh; Sungmi Park; Joon-Young Kim; Han-Jong Kim; Nam Ho Jeoung; Young-Keun Choi; Younghoon Go; Keun-Gyu Park; In-Kyu Lee
Excessive proliferation of vascular smooth muscle cells (VSMCs) and incomplete re-endothelialization is a major clinical problem limiting the long-term efficacy of percutaneous coronary angioplasty. We tested if dimethylfumarate (DMF), an anti-psoriasis drug, could inhibit abnormal vascular remodeling via NF−E2-related factor 2 (Nrf2)-NAD(P)H quinone oxidoreductase 1 (NQO1) activity. DMF significantly attenuated neointimal hyperplasia induced by balloon injury in rat carotid arteries via suppression of the G1 to S phase transition resulting from induction of p21 protein in VSMCs. Initially, DMF increased p21 protein stability through an enhancement in Nrf2 activity without an increase in p21 mRNA. Later on, DMF stimulated p21 mRNA expression through a process dependent on p53 activity. However, heme oxygenase-1 (HO-1) or NQO1 activity, well-known target genes induced by Nrf2, were dispensable for the DMF induction of p21 protein and the effect on the VSMC proliferation. Likewise, DMF protected endothelial cells from TNF-α-induced apoptosis and the dysfunction characterized by decreased eNOS expression. With knock-down of Nrf2 or NQO1, DMF failed to prevent TNF-α-induced cell apoptosis and decreased eNOS expression. Also, CD31 expression, an endothelial specific marker, was restored in vivo by DMF. In conclusion, DMF prevented abnormal proliferation in VSMCs by G1 cell cycle arrest via p21 upregulation driven by Nrf2 and p53 activity, and had a beneficial effect on TNF-α-induced apoptosis and dysfunction in endothelial cells through Nrf2–NQO1 activity suggesting that DMF might be a therapeutic drug for patients with vascular disease.
Vascular Pharmacology | 2015
Seung Hee Choi; Sungmi Park; Chang Joo Oh; Jaechan Leem; Keun-Gyu Park; Inkyu Lee
Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2.
Scientific Reports | 2015
Sun Joo Lee; Ji Yun Jeong; Chang Joo Oh; Sungmi Park; Joon Young Kim; Han Jong Kim; Nam Doo Kim; Young Keun Choi; Ji Yeon Do; Younghoon Go; Chae Myung Ha; Je Yong Choi; Seung Huh; Nam Ho Jeoung; Ki Up Lee; Hueng Sik Choi; Yu Wang; Keun Gyu Park; Robert A. Harris; In-Kyu Lee
Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.
Experimental and Molecular Medicine | 2015
Sungmi Park; Jeongkook Kim; Chang Joo Oh; Seung Hee Choi; Jae-Han Jeon; Inkyu Lee
Scoparone, which is a major constituent of Artemisia capillaries, has been identified as an anticoagulant, hypolipidemic, vasorelaxant, anti-oxidant and anti-inflammatory drug, and it is used for the traditional treatment of neonatal jaundice. Therefore, we hypothesized that scoparone could suppress the proliferation of VSMCs by interfering with STAT3 signaling. We found that the proliferation of these cells was significantly attenuated by scoparone in a dose-dependent manner. Scoparone markedly reduced the serum-stimulated accumulation of cells in the S phase and concomitantly increased the proportion of cells in the G0/G1 phase, which was consistent with the reduced expression of cyclin D1, phosphorylated Rb and survivin in the VSMCs. Cell adhesion markers, such as MCP-1 and ICAM-1, were significantly reduced by scoparone. Interestingly, this compound attenuated the increase in cyclin D promoter activity by inhibiting the activities of both the WT and active forms of STAT3. Similarly, the expression of a cell proliferation marker induced by PDGF was decreased by scoparone with no change in the phosphorylation of JAK2 or Src. On the basis of the immunofluorescence staining results, STAT3 proteins phosphorylated by PDGF were predominantly localized to the nucleus and were markedly reduced in the scoparone-treated cells. In summary, scoparone blocks the accumulation of STAT3 transported from the cytosol to the nucleus, leading to the suppression of VSMC proliferation through G1 phase arrest and the inhibition of Rb phosphorylation. This activity occurs independent of the form of STAT3 and upstream of kinases, such as Jak and Src, which are correlated with abnormal vascular remodeling due to the presence of an excess of growth factors following vascular injury. These data provide convincing evidence that scoparone may be a new preventative agent for the treatment of cardiovascular diseases.
Kidney International | 2017
Chang Joo Oh; Chae Myeong Ha; Young Keun Choi; Sungmi Park; Mi Sun Choe; Nam Ho Jeoung; Yang Hoon Huh; Hyo Jeong Kim; Hee Seok Kweon; Ji min Lee; Sun Joo Lee; Jae Han Jeon; Robert A. Harris; Keun Gyu Park; In-Kyu Lee
Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.
Diabetes | 2017
Yu-Mi Lee; Chae-Myeong Ha; Se-A Kim; Themis Thoudam; Young-Ran Yoon; Dae-Jung Kim; Hyeon Chang Kim; Hyo-Bang Moon; Sungmi Park; In-Kyu Lee; Duk-Hee Lee
Low-dose persistent organic pollutants (POPs), especially organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), have emerged as a new risk factor for type 2 diabetes. We evaluated whether chronic exposure to low-dose POPs affects insulin secretory function of β-cells in humans and in vitro cells. Serum concentrations of OCPs and PCBs were measured in 200 adults without diabetes. Mathematical model–based insulin secretion indices were estimated by using a 2-h seven-sample oral glucose tolerance test. Insulin secretion by INS-1E β-cells was measured after 48 h of treatment with three OCPs or one PCB mixture. Static second-phase insulin secretion significantly decreased with increasing serum concentrations of OCPs. Adjusted means were 63.2, 39.3, 44.1, 39.3, 39.7, and 22.3 across six categories of a summary measure of OCPs (Ptrend = 0.02). Dynamic first-phase insulin secretion remarkably decreased with increasing concentrations of OCPs among only insulin-sensitive individuals (Ptrend = 0.02); the insulin levels among individuals with high OCPs were ∼30% of those with low OCPs. Compared with OCPs, PCBs showed weaker associations. The decreased insulin secretion by INS-1E β-cells was observed for even 1 pmol/L OCP. The data from human and in vitro cell experiments suggest that chronic exposure to low-dose POPs, especially OCPs, can induce pancreatic β-cell dysfunction.
Canadian Journal of Physiology and Pharmacology | 2017
Seung Hee Choi; Jaechan Leem; Sungmi Park; Chong-Kee Lee; Keun-Gyu Park; Inkyu Lee
Dipeptidyl peptidase 4 (DPP-4) inhibitors are widely used antihyperglycemic agents for type 2 diabetes mellitus. Recently, increasing attention has been focused on the pleiotropic actions of DPP-4 inhibitors. The aim of the present study was to examine whether gemigliptin, a recently developed DPP-4 inhibitor, could ameliorate features of metabolic syndrome. Mice were fed a Western diet (WD) for 12 weeks and were subsequently divided into 2 groups: mice fed a WD diet alone or mice fed a WD diet supplemented with gemigliptin for an additional 4 weeks. Gemigliptin treatment attenuated WD-induced body mass gain, hypercholesterolemia, adipocyte hypertrophy, and macrophage infiltration into adipose tissue, which were accompanied by an increased expression of uncoupling protein 1 in subcutaneous fat. These events contributed to improved insulin sensitivity, as assessed by the homeostasis model assessment of insulin resistance and intraperitoneal insulin tolerance test. Furthermore, gemigliptin reduced WD-induced hepatic triglyceride accumulation via inhibition of de novo lipogenesis and activation of fatty acid oxidation, which was accompanied by AMP-dependent protein kinase activation. Gemigliptin ameliorated WD-induced hepatic inflammation and fibrosis through suppression of oxidative stress. These results suggest that DPP-4 inhibitors may represent promising therapeutic agents for metabolic syndrome beyond their current role as antihyperglycemic agents.
Scientific Reports | 2016
Sun Joo Lee; Ji Yun Jeong; Chang Joo Oh; Sungmi Park; Joon Young Kim; Han Jong Kim; Nam Doo Kim; Young Keun Choi; Ji Yeon Do; Younghoon Go; Chae Myeong Ha; Je Yong Choi; Seung Huh; Nam Ho Jeoung; Ki Up Lee; Hueng Sik Choi; Yu Wang; Keun Gyu Park; Robert A. Harris; Inkyu Lee
Scientific Reports 5: Article number: 16577; 10.1038/srep16577published online November122015; updated: January272016 The original version of this Article contained a typographical error in the spelling of the author Chae-Myeong Ha which was incorrectly given as Chae-Myung Ha. This has now been corrected in the PDF and HTML versions of the Article.