Younghoon Go
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Younghoon Go.
Nature Communications | 2015
Chang-Myung Oh; Jun Namkung; Younghoon Go; Ko Eun Shong; Kyuho Kim; Hyeongseok Kim; Bo-Yoon Park; Ho-Won Lee; Yong Hyun Jeon; Junghan Song; Minho Shong; Vijay K. Yadav; Gerard Karsenty; Shingo Kajimura; In-Kyu Lee; Sangkyu Park; Hail Kim
Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.
Diabetes, Obesity and Metabolism | 2015
Joon-Young Kim; Kwi-Hyun Bae; Young-Keun Choi; Younghoon Go; Mi Sun Choe; Yong Hyun Jeon; Ho-Won Lee; Seung Hoi Koo; J. W. Perfield; Robert A. Harris; In-Kyu Lee; Keun Gyu Park
To investigate the effects of LY2405319, an analogue of fibroblast growth factor 21 (FGF21), on glucose homeostasis in streptozotocin (STZ)‐induced insulin‐deficient mice (STZ mice).
PLOS ONE | 2013
Hyeon-Ji kang; Hyun-Ae Seo; Younghoon Go; Chang Joo Oh; Nam Ho Jeoung; Keun-Gyu Park; In-Kyu Lee
The excessive accumulation of adipocytes contributes to the development of obesity and obesity-related diseases. The interactions of several transcription factors, such as C/EBPβ, PPARγ, C/EBPα, Nrf2, and STAT3, are required for adipogenic differentiation. Dimethylfumarate (DMF), an immune modulator and antioxidant, may function as an inhibitor of STAT3 and an activator of Nrf2. This study examined whether DMF inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inhibiting STAT3 or activating Nrf2. DMF suppressed 3T3-L1 preadipocyte differentiation to mature adipocytes in a dose-dependent manner as determined by Oil Red O staining. The mRNA and protein levels of adipogenic genes, including C/EBPβ, C/EBPα, PPARγ, SREBP-1c, FAS, and aP2, were significantly lower in DMF-treated 3T3-L1 preadipocytes. Suppression of adipogenic differentiation by DMF treatment resulted primarily from inhibition of the early stages of differentiation. DMF inhibits clonal expansion during adipogenic differentiation through induction of a G1 cell cycle arrest. Additionally, DMF regulates cell cycle-related proteins, such as p21, pRb, and cyclin D. DMF treatment markedly inhibited differentiation medium-induced STAT3 phosphorylation and inhibited STAT3 transcriptional activation of a reporter construct composed of four synthetic STAT3-response elements. Moreover, inhibition of endogenous Nrf2 activity using a dominant negative Nrf2 did not abolish the DMF-induced inhibition of adipogenic differentiation of 3T3-L1 preadipocytes. In summary, DMF is a negative regulator of adipogenic differentiation based on its regulation of adipogenic transcription factors and cell cycle proteins. This negative regulation by DMF is mediated by STAT3 inhibition, but is unlikely to involve Nrf2 activation.
Redox biology | 2014
Chang Joo Oh; Sungmi Park; Joon-Young Kim; Han-Jong Kim; Nam Ho Jeoung; Young-Keun Choi; Younghoon Go; Keun-Gyu Park; In-Kyu Lee
Excessive proliferation of vascular smooth muscle cells (VSMCs) and incomplete re-endothelialization is a major clinical problem limiting the long-term efficacy of percutaneous coronary angioplasty. We tested if dimethylfumarate (DMF), an anti-psoriasis drug, could inhibit abnormal vascular remodeling via NF−E2-related factor 2 (Nrf2)-NAD(P)H quinone oxidoreductase 1 (NQO1) activity. DMF significantly attenuated neointimal hyperplasia induced by balloon injury in rat carotid arteries via suppression of the G1 to S phase transition resulting from induction of p21 protein in VSMCs. Initially, DMF increased p21 protein stability through an enhancement in Nrf2 activity without an increase in p21 mRNA. Later on, DMF stimulated p21 mRNA expression through a process dependent on p53 activity. However, heme oxygenase-1 (HO-1) or NQO1 activity, well-known target genes induced by Nrf2, were dispensable for the DMF induction of p21 protein and the effect on the VSMC proliferation. Likewise, DMF protected endothelial cells from TNF-α-induced apoptosis and the dysfunction characterized by decreased eNOS expression. With knock-down of Nrf2 or NQO1, DMF failed to prevent TNF-α-induced cell apoptosis and decreased eNOS expression. Also, CD31 expression, an endothelial specific marker, was restored in vivo by DMF. In conclusion, DMF prevented abnormal proliferation in VSMCs by G1 cell cycle arrest via p21 upregulation driven by Nrf2 and p53 activity, and had a beneficial effect on TNF-α-induced apoptosis and dysfunction in endothelial cells through Nrf2–NQO1 activity suggesting that DMF might be a therapeutic drug for patients with vascular disease.
The Journal of Neuroscience | 2015
Mithilesh Kumar Jha; Gyun Jee Song; Maan-Gee Lee; Nam Ho Jeoung; Younghoon Go; Robert A. Harris; Dong Ho Park; Hyun Kook; In-Kyu Lee; Kyoungho Suk
Pyruvate dehydrogenase kinases (PDK1–4) are mitochondrial metabolic regulators that serve as decision makers via modulation of pyruvate dehydrogenase (PDH) activity to convert pyruvate either aerobically to acetyl-CoA or anaerobically to lactate. Metabolic dysregulation and inflammatory processes are two sides of the same coin in several pathophysiological conditions. The lactic acid surge associated with the metabolic shift has been implicated in diverse painful states. In this study, we investigated the role of PDK-PDH-lactic acid axis in the pathogenesis of chronic inflammatory pain. Deficiency of Pdk2 and/or Pdk4 in mice attenuated complete Freunds adjuvant (CFA)-induced pain hypersensitivities. Likewise, Pdk2/4 deficiency attenuated the localized lactic acid surge along with hallmarks of peripheral and central inflammation following intraplantar administration of CFA. In vitro studies supported the role of PDK2/4 as promoters of classical proinflammatory activation of macrophages. Moreover, the pharmacological inhibition of PDKs or lactic acid production diminished CFA-induced inflammation and pain hypersensitivities. Thus, a PDK-PDH-lactic acid axis seems to mediate inflammation-driven chronic pain, establishing a connection between metabolism and inflammatory pain. SIGNIFICANCE STATEMENT The mitochondrial pyruvate dehydrogenase (PDH) kinases (PDKs) and their substrate PDH orchestrate the conversion of pyruvate either aerobically to acetyl-CoA or anaerobically to lactate. Lactate, the predominant end product of glycolysis, has recently been identified as a signaling molecule for neuron-glia interactions and neuronal plasticity. Pathological metabolic shift and subsequent lactic acid production are thought to play an important role in diverse painful states; however, their contribution to inflammation-driven pain is still to be comprehended. Here, we report that the PDK-PDH-lactic acid axis constitutes a key component of inflammatory pain pathogenesis. Our findings establish an unanticipated link between metabolism and inflammatory pain. This study unlocks a previously ill-explored research avenue for the metabolic control of inflammatory pain pathogenesis.
Journal of Biological Chemistry | 2016
Habibur Rahman; Mithilesh Kumar Jha; Jong Heon Kim; Youngpyo Nam; Maan-Gee Lee; Younghoon Go; Robert A. Harris; Dong Ho Park; Hyun Kook; In-Kyu Lee; Kyoungho Suk
The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.
Scientific Reports | 2015
Sun Joo Lee; Ji Yun Jeong; Chang Joo Oh; Sungmi Park; Joon Young Kim; Han Jong Kim; Nam Doo Kim; Young Keun Choi; Ji Yeon Do; Younghoon Go; Chae Myung Ha; Je Yong Choi; Seung Huh; Nam Ho Jeoung; Ki Up Lee; Hueng Sik Choi; Yu Wang; Keun Gyu Park; Robert A. Harris; In-Kyu Lee
Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.
Diabetologia | 2013
Ae-Kyung Min; Ji-Yun Jeong; Younghoon Go; Young-Keun Choi; Yong Deuk Kim; In-Kyu Lee; Keun Gyu Park
Aims/hypothesisFenofibrate is a drug used to treat hyperlipidaemia that works by inhibiting hepatic triacylglycerol synthesis. Sterol regulatory element binding protein-1c (SREBP-1c) is a major regulator of the expression of genes involved in hepatic triacylglycerol synthesis. In addition, endoplasmic reticulum (ER)-bound transcription factor families are involved in the control of various metabolic pathways. Here, we show a novel function for an ER-bound transcription factor, cAMP response element binding protein H (CREBH), in fenofibrate-mediated inhibition of hepatic lipogenesis.MethodsThe effects of fenofibrate and adenovirus-mediated Crebh (also known as Creb313) overexpression (Ad-Crebh) on hepatic SREBP-1c production and lipogenesis in vitro and in vivo were investigated. We also examined whether downregulation of endogenous hepatic Crebh by small interfering (si)RNA restores the fenofibrate effect on hepatic lipogenesis and SREBP-1c production. Finally, we examined the mechanism by which CREBH inhibits hepatic SREBP-1c production.ResultsFasting and fenofibrate treatment induced CREBH production and decreased SREBP-1c levels. Indeed, Ad-Crebh inhibited insulin- and liver X receptor agonist TO901317-induced Srebp-1c (also known as Srebf1) mRNA expression in cultured hepatocytes. Moreover, increased production of CREBH in the liver of mice following tail-vein injection of Ad-Crebh inhibited high-fat diet-induced hepatic steatosis through inhibition of Srebp-1c expression. The inhibition of endogenous Crebh expression by siRNA restored fenofibrate-induced suppression of Srebp-1c expression and hepatic lipid accumulation both in vitro and in vivo.Conclusions/interpretationThese results show that fenofibrate decreases hepatic lipid synthesis through induction of CREBH. This study suggests CREBH as a novel negative regulator of SREBP-1c production and hepatic lipogenesis.
Diabetes | 2016
Younghoon Go; Ji Yun Jeong; Nam Ho Jeoung; Jae Han Jeon; Bo Yoon Park; Hyeon Ji Kang; Chae Myeong Ha; Young Keun Choi; Sun Joo Lee; Hye Jin Ham; Byung-Gyu Kim; Keun Gyu Park; So Young Park; Chul Ho Lee; Cheol Soo Choi; Tae Sik Park; W. N. Paul Lee; Robert A. Harris; In-Kyu Lee
Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease.
Journal of Biomolecular Screening | 2010
Hyejin Jeon; Younghoon Go; Minchul Seo; Won-Ha Lee; Kyoungho Suk
Phagocytosis is a critical host defense mechanism that clears invading pathogens, apoptotic cells, and cell debris; it is an essential process for normal development, tissue remodeling, immune response, and inflammation. Here, a functional selection strategy was used to isolate novel phagocytosis-promoting genes. After the retroviral transfer of mouse brain cDNA library into NIH3T3 mouse fibroblast cells, cell sorting was used to select the cells that phagocytosed fluorescent zymosan particles. The cDNAs were retrieved from the selected cells and identified by DNA sequencing as eIF5A, Meg3, Tubb5, Sparcl-1, Uchl-1, Bsg (CD147), Ube2v1, and Pamr1. The phagocytosis-promoting activity for some of these cDNAs was confirmed by transient transfection in the independent phagocytosis assays. Thus, the unbiased selection procedure successfully identified multiple phagocytosis-promoting genes. The selection method can be applied to other cell-based assays where cells with a desired phenotype can be physically separated. Moreover, the new gene targets uncovered in this study could be relevant to biomolecule screening in search of phagocytosis-regulating agents. In a small-scale screen, a series of imidazopyridine compounds was tested to identify the small molecules that modulate eIF5A-mediated phagocytic activity. Several compounds that influenced the phagocytic activity can be further used as chemical-genetic tools to delineate the mechanisms of eIF5A action and be potential drug candidates that are capable of therapeutically modulating phagocytic activity.