Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunil Kumar Boda is active.

Publication


Featured researches published by Sunil Kumar Boda.


Journal of Materials Chemistry B | 2015

Magnetic field assisted stem cell differentiation - role of substrate magnetization in osteogenesis

Sunil Kumar Boda; Greeshma Thrivikraman; Bikramjit Basu

Among the multiple modulatory physical cues explored to regulate cellular processes, the potential of magneto-responsive substrates in magnetic field stimulated stem cell differentiation is still unperceived. In this regard, the present work demonstrates how an external magnetic field can be applied to direct stem cell differentiation towards osteogenic commitment. A new culture methodology involving periodic delivery of 100 mT static magnetic field (SMF) in combination with HA-Fe3O4 magnetic substrates possessing a varying degree of substrate magnetization was designed for the study. The results demonstrate that an appropriate combination of weakly ferromagnetic substrates and SMF exposure enhanced cell viability, DNA synthesis and caused an early switchover to osteogenic lineage as supported by Runx2 immunocytochemistry and ALP expression. However, the mRNA expression profile of early osteogenic markers (Runx2, ALP, Col IA) was comparable despite varying substrate magnetic properties (diamagnetic to ferromagnetic). On the contrary, a remarkable upregulation of late bone development markers (OCN and OPN) was explicitly detected on weak and strongly ferromagnetic substrates. Furthermore, SMF induced matrix mineralization with elevated calcium deposition on similar substrates, even in the absence of osteogenic supplements. More specifically, the role of SMF in increasing intracellular calcium levels and in inducing cell cycle arrest at G0/G1 phase was elucidated as the major molecular event triggering osteogenic differentiation. Taken together, the above results demonstrate the competence of magnetic stimuli in combination with magneto-responsive biomaterials as a potential strategy for stem cell based bone tissue engineering.


ACS Applied Materials & Interfaces | 2017

Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs

Sunil Kumar Boda; Greeshma Thrivikraman; Bharati Panigrahy; D. D. Sarma; Bikramjit Basu

Strontium releasing bioactive ceramics constitute an important class of biomaterials for osteoporosis treatment. In the present study, we evaluated the synthesis, phase assemblage, and magnetic properties of strontium hexaferrite, SrFe12O19, (SrFe) nanoparticles. On the biocompatibility front, the size- and dose-dependent cytotoxicity of SrFe against human mesenchymal stem cells (hMSCs) were investigated. After establishing their non-toxic nature, we used the strontium hexaferrite nanoparticles (SrFeNPs) in varying amount (x = 0, 10, and 20 wt %) to consolidate bioactive composites with hydroxyapatite (HA) by multi-stage spark plasma sintering (SPS). Rietveld refinement of these spark plasma sintered composites revealed a near complete decomposition of SrFe12O19 to magnetite (Fe3O4) along with a marked increase in the unit cell volume of HA, commensurate with strontium-doped HA. The cytocompatibility of SrHA-Fe composites with hMSCs was assessed using qualitative and quantitative morphological analysis along with phenotypic and genotypic expression for stem cell differentiation. A marked decrease in the stemness of hMSCs, indicated by reduced vimentin expression and acquisition of osteogenic phenotype, evinced by alkaline phosphatase (ALP) and collagen deposition was recorded on SrHA-Fe composites in osteoinductive culture. A significant upregulation of osteogenic marker genes (Runx2, ALP and OPN) was detected in case of the SrHA-Fe composites, whereas OCN and Col IA expression were similarly high for baseline HA. However, matrix mineralization was elevated on SrHA-Fe composites in commensurate with the release of Sr2+ and Fe2+. Summarizing, the current work is the first report of strontium hexaferrite as a non-toxic nanobiomaterial. Also, SrHA-based iron oxide composites can potentially better facilitate bone formation, when compared to pristine HA.


ACS Applied Materials & Interfaces | 2017

Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers while Suppressing Osteoclast Activity

Lin Weng; Sunil Kumar Boda; Matthew J. Teusink; Franklin D. Shuler; Xiaoran Li; Jingwei Xie

Electrospun bioactive glass fibers show great potential as scaffolds for bone tissue engineering due to their architectural biomimicry of the bone extracellular matrix and their composition capable of providing soluble bioactive cues for bone regeneration and remodeling. Trace elements can be doped to further promote osteogenesis and angiogenesis during bone regeneration. Cationic substitution of strontium for calcium in bioactive glass positively enhances osteoblast phenotype, while suppressing osteoclast activity. Further, the addition of copper spontaneously improves the vascularization during neobone formation. The objective of this study was to fabricate and characterize electrospun bioactive glass fibers doped with strontium and copper and evaluate their potential for bone repair/regeneration in vitro. Different ratios of strontium and copper were doped in electrospun bioactive glass fibers. The released strontium and copper from doped fibers could reach effective concentrations within 40 h and last for 4 weeks. These bioactive glass fibers demonstrate their bioactivity by promoting osteoblastic and endothelial cell activity and inhibiting the formation of osteoclasts or bone resorbing cells. Additionally, in vitro cell culture of different cell types in the presence of extraction solutions of the electrospun bioactive glass fibers showed that the dopants achieved their individual goals without causing significant cytotoxicity. Altogether, this novel class of bioactive glass fibers holds great promise for bone regeneration.


Bioelectrochemistry | 2015

Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli

Sunil Kumar Boda; Ravikumar K; Deepak Kumar Saini; Bikramjit Basu

The present study examines the efficacy of a high strength pulsed magnetic field (PMF) towards bacterial inactivation in vitro, without compromising eukaryotic cell viability. The differential response of prokaryotes [Staphylococcus aureus (MRSA), Staphylococcus epidermidis, and Escherichia coli], and eukaryotes [C2C12 mouse myoblasts and human mesenchymal stem cells, hMSCs] upon exposure to varying PMF stimuli (1-4 T, 30 pulses, 40 ms pulse duration) is investigated. Among the prokaryotes, ~60% and ~70% reduction was recorded in the survival of staphylococcal species and E. coli, respectively at 4 T PMF as evaluated by colony forming unit (CFU) analysis and flow cytometry. A 2-5 fold increase in intracellular ROS (reactive oxygen species) levels suggests oxidative stress as the key mediator in PMF induced bacterial death/injury. The 4 T PMF treated staphylococci also exhibited longer doubling times. Both TEM and fluorescence microscopy revealed compromised membranes of PMF exposed bacteria. Under similar PMF exposure conditions, no immediate cytotoxicity was recorded in C2C12 mouse myoblasts and hMSCs, which can be attributed to the robust resistance towards oxidative stress. The ion interference of iron containing bacterial proteins is invoked to analytically explain the PMF induced ROS accumulation in prokaryotes. Overall, this study establishes the potential of PMF as a bactericidal method without affecting eukaryotic viability. This non-invasive stimulation protocol coupled with antimicrobial agents can be integrated as a potential methodology for the localized treatment of prosthetic infections.


Journal of Biomedical Materials Research Part B | 2016

Inhibitory effect of direct electric field and HA-ZnO composites on S-aureus biofilm formation

Sunil Kumar Boda; Indu Bajpai; Bikramjit Basu

In addressing the issue of prosthetic infection, we demonstrate herein how direct electric field (DC EF) stimulation can effectively inhibit biofilm formation, when pathogenic Staphylococcus aureus (MRSA, USA 300) are grown on HA-xZnO (x = 0, 5, 7.5, and 10 wt %) biocomposites in vitro. After bacterial preincubation for 4 h, a low intensity DC EF (1V/cm) was applied for different time periods (t = 6, 12, 18, and 24 h). The bacterial viability and biofilm maturation were evaluated by a combination of biochemical assays, fluorescence/confocal microscopy, and flow cytometry. The results confirm a time-dependent and composition-independent decrease in bacterial viability and biofilm formation on HA-xZnO composites w.r.t EF-treated HA. Flow cytometry analysis indicated that 12 h EF application resulted in membrane depolarization of ∼35% of S. aureus populations on HA-xZnO composites. The live/dead assay results revealed ∼60% decline in viable bacterial numbers with a concomitant 3.5-fold increase in the production of reactive oxygen species (ROS) after 18 h of EF. The loss in bacterial viability and biofilm instability is due to the synergistic bactericidal action of ZnO and EF. Taken together, the use of engineered biomaterial substrate with antimicrobial reinforcement coupled with continuous low intensity EF application can be adopted to treat prosthetic implant associated infection.


Journal of Aerosol Science | 2018

Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review

Sunil Kumar Boda; Xiaoran Li; Jingwei Xie

Electrospraying (ES) is a robust and versatile technique for the fabrication of micro- and nanoparticulate materials of various compositions, morphologies, shapes, textures and sizes. The physics of ES provides a great degree of flexibility towards the materials design of choice with desired physicochemical and biological properties. Not surprising, this technology has become an important tool for the production of micro- and nanostructured materials, especially in the pharmaceutical and biomedical arena. In this review, a basic introduction to the fundamentals of ES along with a brief description of the experimental parameters that can be manipulated to obtain micro- and nanostructured materials of desired composition, size, and configuration are outlined. A greater focus of this review is to bring to light the broad range of electrosprayed materials and their applications in drug delivery, biomedical imaging, implant coating, tissue engineering, and sensing. Taken together, this review will provide an appreciation of this unique technology, which can be used to fabricate micro- and nanostructured materials with tremendous applications in the pharmaceutical and biomedical fields.


Advanced Healthcare Materials | 2018

Emerging Roles of Electrospun Nanofibers in Cancer Research

Shixuan Chen; Sunil Kumar Boda; Surinder K. Batra; Xiaoran Li; Jingwei Xie

This article reviews the recent progress of electrospun nanofibers in cancer research. It begins with a brief introduction to the emerging potential of electrospun nanofibers in cancer research. Next, a number of recent advances on the important features of electrospun nanofibers critical for cancer research are discussed including the incorporation of drugs, control of release kinetics, orientation and alignment of nanofibers, and the fabrication of 3D nanofiber scaffolds. This article further highlights the applications of electrospun nanofibers in several areas of cancer research including local chemotherapy, combinatorial therapy, cancer detection, cancer cell capture, regulation of cancer cell behavior, construction of in vitro 3D cancer model, and engineering of bone microenvironment for cancer metastasis. This progress report concludes with remarks on the challenges and future directions for design, fabrication, and application of electrospun nanofibers in cancer diagnostics and therapeutics.


Journal of Biomedical Materials Research Part B | 2017

Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria.

Sunil Kumar Boda; Bikramjit Basu

A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections.


Dental Clinics of North America | 2017

Biomaterials for Craniofacial Bone Regeneration

Greeshma Thrivikraman; Avathamsa Athirasala; Chelsea Twohig; Sunil Kumar Boda; Luiz E. Bertassoni

Functional reconstruction of craniofacial defects is a major clinical challenge in craniofacial sciences. The advent of biomaterials is a potential alternative to standard autologous/allogenic grafting procedures to achieve clinically successful bone regeneration. This article discusses various classes of biomaterials currently used in craniofacial reconstruction. Also reviewed are clinical applications of biomaterials as delivery agents for sustained release of stem cells, genes, and growth factors. Recent promising advancements in 3D printing and bioprinting techniques that seem to be promising for future clinical treatments for craniofacial reconstruction are covered. Relevant topics in the bone regeneration literature exemplifying the potential of biomaterials to repair bone defects are highlighted.


Bioelectrochemistry | 2017

Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells

Ravikumar K; Sunil Kumar Boda; Bikramjit Basu

Human Mesenchymal Stem cells (hMSCs) have the unique potential to differentiate into multiple cell types. Depending on the cellular microenvironment (physical and biochemical cues), hMSCs can be directed to differentiate into osteogenic, chondrogenic, myogenic and adipogenic lineages. Among the strategies available to direct stem cell fate processes, electrical stimulation based approach has been extensively investigated in recent studies. In the present study, the conducting Hydroxyapatite-CaTiO3 (HA-CT) composites are used as electroconductive platforms to support the differentiation of hMSCs, in vitro. During culture without osteogenic supplements, intermittent electrical stimulation is provided every 24h over a period of 4weeks through parallel plate electrodes separated by a distance of 15mm and maintained at a static potential of 15V for 10min. In addition to cell morphological changes, the differentiation behavior of hMSCs after electrical stimulation is evaluated by mRNA expression analysis through polymerase chain reaction (PCR). Importantly, specific bone markers, in particular ALP, Col IA and Osteocalcin are expressed more significantly due to electrical stimulation, which also enhances the extent of extracellular matrix mineralization. Taken together, this study establishes the effectiveness of electroconductive HA-CT composites together with intermittent electrical stimulation to direct osteogenesis of hMSCs.

Collaboration


Dive into the Sunil Kumar Boda's collaboration.

Top Co-Authors

Avatar

Bikramjit Basu

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Jingwei Xie

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Weng

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Teusink

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoran Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongjun Wang

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shixuan Chen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ravikumar K

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge