Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunil Nagpal is active.

Publication


Featured researches published by Sunil Nagpal.


Journal of Cellular Physiology | 2007

Signaling by estrogens

Boris J. Cheskis; James G. Greger; Sunil Nagpal; Leonard P. Freedman

By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell‐type and tissue‐type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the “detrimental,” proliferative effects in reproductive tissues and organs. J. Cell. Physiol. 213:610–617.


European Journal of Pharmacology | 2000

Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes.

Ulrich Kintscher; Stephan Goetze; Shu Wakino; Sarah Kim; Sunil Nagpal; Roshantha A. S. Chandraratna; Kristof Graf; Eckart Fleck; Willa A. Hsueh; Ronald E. Law

Monocyte chemotactic protein-1 (MCP-1)-directed transendothelial migration of monocytes plays a key role in the development of inflammatory diseases. Infiltration of tissues by monocytes requires degradation of extracellular matrices, a process that involves matrix metalloproteinases. We studied the effects of peroxisome proliferator-activated receptor (PPAR) gamma, alpha, and retinoid X receptor alpha (RXRalpha) ligands on MCP-1-directed migration and matrix metalloproteinase expression of a human acute monocytic leukemia cell line (THP-1). PPARgamma ligands attenuated MCP-1-induced migration, with 50% inhibition (IC(50)) at 2.8 microM for troglitazone and 4.8 microM for rosiglitazone. PPARalpha ligands WY-14643 (IC(50): 0.9 microM) and 5,8,11,14-eicosatetranoic acid (IC(50): 9.9 microM), and the potent RXRalpha ligand AGN 4204 (IC(50): 3.6 nM) also blocked monocyte migration. Troglitazone, rosiglitazone, or AGN 4204 inhibited phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 expression. PPARalpha activators WY-14643 and 5,8,11,14-eicosatetraynoic acid, however, had no inhibitory effect. AGN 4204 increased PMA-induced tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) expression, whereas all PPAR ligands showed no effect. All PPAR and RXRalpha ligands blocked chemotaxis of THP-1 monocytes in the absence of a matrix barrier. This study demonstrates that activated PPARs and RXRalpha, block MCP-1-directed monocyte migration, mediated, at least in part, through their effects on matrix metalloproteinase-9 or TIMP-1 production, or chemotaxis.


Journal of Clinical Investigation | 2006

Identification and characterization of noncalcemic, tissue-selective, nonsecosteroidal vitamin D receptor modulators

Yanfei Ma; Berket Khalifa; Ying K. Yee; Jianfen Lu; Ai Memezawa; Rajesh S. Savkur; Yoko Yamamoto; Subba R. Chintalacharuvu; Kazuyoshi Yamaoka; Keith R. Stayrook; Kelli S. Bramlett; Qing Q. Zeng; Srinivasan Chandrasekhar; Xiao-Peng Yu; Jared Harris Linebarger; Stephen J. Iturria; Thomas P. Burris; Shigeaki Kato; William W. Chin; Sunil Nagpal

Vitamin D receptor (VDR) ligands are therapeutic agents for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. VDR ligands also show immense potential as therapeutic agents for autoimmune diseases and cancers of skin, prostate, colon, and breast as well as leukemia. However, the major side effect of VDR ligands that limits their expanded use and clinical development is hypercalcemia that develops as a result of the action of these compounds mainly on intestine. In order to discover VDR ligands with less hypercalcemia liability, we sought to identify tissue-selective VDR modulators (VDRMs) that act as agonists in some cell types and lack activity in others. Here, we describe LY2108491 and LY2109866 as nonsecosteroidal VDRMs that function as potent agonists in keratinocytes, osteoblasts, and peripheral blood mononuclear cells but show poor activity in intestinal cells. Finally, these nonsecosteroidal VDRMs were less calcemic in vivo, and LY2108491 exhibited more than 270-fold improved therapeutic index over the naturally occurring VDR ligand 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in an in vivo preclinical surrogate model of psoriasis.


Current Pharmaceutical Design | 2000

Recent Developments in Receptor-Selective Retinoids

Sunil Nagpal; Roshantha A. S. Chandraratna

Natural (all trans-retinoic acid, RA) and synthetic retinoids exhibit potent anti-proliferative, normalization of differentiation and anti-inflammatory activities which appear to account for their therapeutic effects in acne, psoriasis, photoaging, precancerous lesions and established cancers. Although RA has shown considerable promise in dermatologic indications, certain side effects have restricted its use as a choice of agent for chronic administration. Systematic synthesis of receptor-selective retinoids has resulted in two topical drugs, Tazorac/Zorac (tazarotene) and Differin (adapalene). Tazorac is indicated for psoriasis and acne and Differin gel for the treatment of acne. These drugs bind to the retinoic acid receptor (RAR) family members. Various RAR subtype-specific and function-selective retinoids have been synthesized. These retinoids, which are in various stages of pre-clinical development for the treatment of cancers, psoriasis and as an antidote to Accutane-mediated mucocutaneous toxicity, will also be discussed in this review. Discovery of another retinoid receptor, retinoid X receptor (RXR), revealed that RXR-specific retinoids already existed in retinoid chemical libraries. Structure activity relationship studies based upon binding and transactivation assays led to the synthesis of RXR-specific ligands with high affinities for RXR subtypes. These compounds were found to be effective in the treatment of hyperglycemia in animal models of type II diabetes. The discovery of novel retinoids along with an increased understanding of the biological functions and mechanisms of action of retinoid receptors are likely to result in improved treatments for existing responsive indications and identification of new retinoid therapeutic targets.


Journal of The American Academy of Dermatology | 1997

Molecular mechanisms of tazarotene action in psoriasis

Madeleine Duvic; Sunil Nagpal; Arisa T. Asano; Roshantha A. S. Chandraratna

Psoriasis is a chronic immune-mediated disease that is characterized by the hyperproliferation and abnormal differentiation of keratinocytes and by inflammation. The epidermal changes associated with psoriasis may be due to the infiltration of inflammatory T lymphocytes and the release of cytokines in response to antigenic stimulation. Tazarotene is a retinoic acid receptor-specific retinoid with demonstrated efficacy in the topical treatment of psoriasis. Tazarotene down-regulates markers of keratinocyte differentiation, keratinocyte proliferation, and inflammation. The drug also up-regulates three novel genes TIG-1 (tazarotene-induced gene-1), TIG-2, and TIG-3, which may mediate an antiproliferative effect. The effect of tazarotene on these markers is probably a direct effect on gene expression rather than an indirect effect associated with disease improvement.


Mini-reviews in Medicinal Chemistry | 2005

Vitamin D Receptor Modulators for Inflammation and Cancer

Ying K. Yee; Subba R. Chintalacharuvu; Jianfen Lu; Sunil Nagpal

1alpha, 25-Dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active form of vitamin D, is an important hormone that is critically required for the maintenance of mineral homeostasis and structural integrity of bones. 1,25-(OH)2D3 accomplishes this by facilitating calcium absorption from the gut and by a direct action on osteoblasts, the bone forming cells. Apart form its classical actions on the gut and bone, 1,25-(OH)2D3 and its synthetic analogs also possess potent anti-proliferative, differentiative and immunomodulatory activities. 1,25-(OH)2D3 exerts these effects through vitamin D receptor (VDR), a ligand-dependent transcription factor that belongs to the superfamily of steroid/thyroid hormone/retinoid nuclear receptors. The presence of VDR in various tissues other than gut and bone, along with their ability to exert differentiation, growth inhibitory and anti-inflammatory action, has set the stage for therapeutic exploitation of VDR ligands for the treatment of various inflammatory indications and cancer. However, the use of VDR ligands in clinic is limited by their major dose-related side effect, namely hypercalcemia/hypercalciuria. Efforts are being undertaken to develop vitamin D receptor modulators (VDRMs) that are tissue-selective and/or gene-selective in their action and these ligands may exhibit increased therapeutic indices. This review explores the recent advances in VDR biology, non-secosteroidal VDR ligands and the current and potential clinical applications of VDR ligands in inflammation and cancer.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Gene expression profiling studies of three SERMs and their conjugated estrogen combinations in human breast cancer cells: Insights into the unique antagonistic effects of bazedoxifene on conjugated estrogens

Ken C. N. Chang; Yihe Wang; Peter V.N. Bodine; Sunil Nagpal; Barry S. Komm

Bazedoxifene (BZA), a new selective estrogen receptor modulator (SERM) was recently approved in Europe for the prevention and treatment of postmenopausal osteoporosis. Combination therapy using BZA and conjugated estrogens (CE) is currently in late stage development representing a new paradigm for the treatment of menopausal symptoms and prevention of osteoporosis. A GeneChip microarray study was designed to compare gene expression profiles of BZA to that of other SERMs, raloxifene (RAL) and lasofoxifene (LAS). In addition, we compared the gene expression profiles of the three SERMs in combination with CE, a mixture of 10 most abundant estrogens present in Premarin. According to the hierarchical clustering heat map analysis, gene clusters that specifically responded to CE treatments or SERM treatments were identified and gene lists sorted based on a set of cutoff filters. A group of genes differentially regulated by CE were also identified to be antagonized by BZA when comparing CE with the BZA+CE treatment. All three SERMs showed significant antagonistic effect against CE-stimulated cell proliferation, based on the MCF-7 cell proliferation assay and GeneChip data, with the order of antagonist activity being BZA>RAL>LAS. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same effects that are observed in clinic by pairing BZA with CE.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2001

Retinoids Inhibit Proliferation of Human Coronary Smooth Muscle Cells by Modulating Cell Cycle Regulators

Shu Wakino; Ulrich Kintscher; Sarah Kim; Simon K. Jackson; Fen Yin; Sunil Nagpal; Roshantha A. S. Chandraratna; Willa A. Hsueh; Ronald E. Law

Abstract—Retinoids inhibit rat vascular smooth muscle cell (VSMC) proliferation in vitro and intimal hyperplasia in vivo. We examined the mechanism of the antiproliferative effect of retinoids on human coronary artery smooth muscle cells (human CASMCs). The RAR ligands all-trans-retinoic acid (atRA) and ethyl-p-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)-l-propenyl]-benzoic acid (TTNPB); a pan-RXR/RAR agonist, 9-cis-retinoic acid (9cRA); and the RXR-selective ligand AGN4204 all inhibited DNA synthesis stimulated with platelet-derived growth factor and insulin (IC50: TTNPB 63 nmol/L, atRA 120 nmol/L, AGN4204 460 nmol/L, 9cRA 1.5 &mgr;mol/L). All retinoids blocked cell cycle progression as determined by flow cytometry and inhibited retinoblastoma protein (Rb) phosphorylation. TTNPB, atRA, and AGN4204 inhibited the mitogenic induction of cyclin D1, whereas 9cRA had no effect. None of the retinoids affected the expression of CDK 2, 4, or 6 or cyclin E. All retinoids attenuated mitogen-induced downregulation of CDKI p27Kip1, a major negative regulator of Rb phosphorylation, partly through stabilizing p27Kip1 turnover. These data demonstrate that retinoids have antiproliferative activity by modulating G1 → S cell cycle regulators in human CASMCs through inhibition of Rb phosphorylation and elevation of p27Kip1 levels.


Journal of Biological Chemistry | 1999

Retinoid-dependent Recruitment of a Histone H1 Displacement Activity by Retinoic Acid Receptor

Sunil Nagpal; Corine Ghosn; Daniel DiSepio; Yanira Molina; Monica Sutter; Elliott S. Klein; Roshantha A. S. Chandraratna

Targeted recruitment of histone acetyltransferase (HAT) activities by sequence-specific transcription factors, including the retinoic acid receptors (RARs) and retinoid X receptors (RXRs), has been proposed to lead to destabilization of nucleosomal cores by acetylation of core histones. However, biochemical evidence indicates that destabilization and depletion of linker H1 histones must also occur at the promoter regions of actively transcribing genes. Mechanisms by which nuclear receptors and other transcription factors affect the removal of histone H1 from transcriptionally silent chromatin have not been previously described. In this report, we show that RARs interact in a ligand-dependent manner with HMG-I, which is known to displace histone H1 from chromatin. We further show that HMG-I and a novel related protein, HMG-R, also interact with other transcription factors. Using sense and antisense constructs of HMG-I/R in transient transfection assays with a retinoid responsive reporter, we also demonstrate that HMG-I/R is important for retinoid dependent transcriptional activity of RAR. These findings suggest a step wise mechanism by which RARs and other transcription factors can cause a targeted unfolding of compact chromatin as a first step in transcriptional activation, which would then be followed by recruitment of HAT activity and subsequent events.


Molecular Endocrinology | 2009

Differential biochemical and cellular actions of Premarin estrogens: distinct pharmacology of bazedoxifene-conjugated estrogens combination.

Thomas J. Berrodin; Ken C. N. Chang; Barry S. Komm; Leonard P. Freedman; Sunil Nagpal

The use of estrogen-based therapies and the selective estrogen receptor (ER) modulator (SERM), raloxifene, which are approved for postmenopausal osteoporosis, is associated with side effects such as uterine/breast hyperproliferation, thromboembolism, and hot flashes. A combination of a new SERM, bazedoxifene (BZA), and Premarin (conjugated estrogens; CE) is under investigation to mitigate the estrogen/SERM side effects with promising results in Phase III clinical trials. To explore the mechanism of BZA/CE action, we investigated the recruitment of cofactor peptides to ERalpha by components of CE and a mixture containing the 10 major components of CE with or without three different SERMs. Here, we demonstrate differential recruitment of cofactor peptides to ERalpha by the individual CE components using a multiplex nuclear receptor-cofactor peptide interaction assay. We show that estrone and equilin are partial agonists in comparison with 17beta-estradiol in recruiting cofactor peptides to ERalpha. Further, CE was more potent than 17beta-estradiol in mediating ERalpha interaction with cofactor peptides. Interestingly, BZA was less potent than other SERMs in antagonizing the CE-mediated cofactor peptide recruitment to ERalpha. Finally, in accordance with these biochemical findings, 17beta-estradiol and CE, as well as SERM/CE combinations, showed differential gene regulation patterns in MCF-7 cells. In addition, BZA showed antagonism of a unique set of CE-regulated genes and did not down-regulate the expression of a number of CE-regulated genes, the expression of which was effectively antagonized by the other two SERMs. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same beneficial effects that are observed in clinic by pairing BZA with CE.

Collaboration


Dive into the Sunil Nagpal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel DiSepio

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Leonard P. Freedman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge