Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunita R. Shah is active.

Publication


Featured researches published by Sunita R. Shah.


Science | 2009

Global cooling during the eocene-oligocene climate transition.

Zhonghui Liu; Mark Pagani; David Zinniker; Robert M. DeConto; Matthew Huber; Henk Brinkhuis; Sunita R. Shah; R. Mark Leckie; Ann Pearson

About 34 million years ago, Earths climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earths temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ∼20°C and cooled an average of ∼5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.


Geochemistry Geophysics Geosystems | 2013

An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures

Stefan Schouten; Ellen C. Hopmans; Antoni Rosell-Melé; Ann Pearson; Pierre Adam; Thorsten Bauersachs; Edouard Bard; Stefano M. Bernasconi; Thomas S. Bianchi; Jochen J. Brocks; Laura Truxal Carlson; Isla S. Castañeda; Sylvie Derenne; Ayça Doğrul Selver; Timothy I. Eglinton; Celine Fosse; Valier Galy; Kliti Grice; Kai-Uwe Hinrichs; Yongsong Huang; Arnaud Huguet; Carme Huguet; Sarah J. Hurley; Anitra E. Ingalls; Guodong Jia; Brendan J. Keely; Chris S. Knappy; Miyuki Kondo; Srinath Krishnan; Sara Lincoln

Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility +/- 3-4 degrees C when translated to temperature) but a large spread in BIT measurements (reproducibility +/- 0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0 degrees C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the true (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.


Radiocarbon | 2007

Ultra-Microscale (5-25 μg C) Analysis of Individual Lipids by 14C AMS: Assessment and Correction for Sample Processing Blanks

Sunita R. Shah; Ann Pearson

Measurements of the natural abundance of radiocarbon in biomarker molecules can be used to elucidate the biogeochemical roles of marine bacteria and archaea in the oceanic water column. However, the relatively low concentration of biomass, especially below the euphotic zone, inevitably results in small sample sizes for compound-specific analyses. In ultra-microscale Δ14C measurements, which we define as measurements on samples smaller than 25μg C, the process of isolating pure compounds and preparing them for measurement adds significant background carbon. This additional blank carbon can contribute up to 40% of the total sample mass; therefore, it is necessary to quantify all components of the processing blank in order to make appropriate corrections. Complete propagation of error is critical in order to report the correct analytical uncertainty. The carbon blank is composed of at least 3 different sources: i) those that scale in proportion to the mass of the sample; ii) sources that contribute a constant mass of blank, e.g. closed-tube combustion; and iii) contaminants from vacuum lines and/or other aspects of sample handling that are difficult to quantify. We approached the problem of correcting for the total sample processing blank by deriving a 4-part isotopic mass balance based on separating the 3 exogenous components from the sample. Subsequently, we derived the appropriate equations for the full propagation of error associated with these corrections. Equations for these terms are presented. Full treatment of a set of raw data is demonstrated using compound-specific Δ14C data from the North Central Pacific water column.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre

Hilary G. Close; Sunita R. Shah; Anitra E. Ingalls; Aaron F. Diefendorf; Eoin L. Brodie; Roberta L. Hansman; Katherine H. Freeman; Lihini I. Aluwihare; Ann Pearson

Sixty percent of the world ocean by area is contained in oligotrophic gyres [Longhurst A (1995) Prog Oceanog 36:77–16], the biomass of which is dominated by picophytoplankton, including cyanobacteria and picoeukaryotic algae, as well as picoheterotrophs. Despite their recognized importance in carbon cycling in the surface ocean, the role of small cells and their detrital remains in the transfer of particulate organic matter (POM) to the deep ocean remains disputed. Because oligotrophic marine conditions are projected to expand under current climate trends, a better understanding of the role of small particles in the global carbon cycle is a timely goal. Here we use the lipid profiles, radiocarbon, and stable carbon isotopic signatures of lipids from the North Pacific Subtropical Gyre to show that in the surface ocean, lipids from submicron POM (here called extra-small POM) are distinct from larger classes of suspended POM. Remarkably, this distinct extra-small POM signature dominates the total lipids collected at mesopelagic depth, suggesting that the lipid component of mesopelagic POM primarily contains the exported remains of small particles. Transfer of submicron material to mesopelagic depths in this location is consistent with model results that claim the biological origin of exported carbon should be proportional to the distribution of cell types in the surface community, irrespective of cell size [Richardson TL, Jackson GA (2007) Science 315:838–840]. Our data suggest that the submicron component of exported POM is an important contributor to the global biological pump, especially in oligotrophic waters.


Environmental Science & Technology | 2013

Autonomous Application of Quantitative PCR in the Deep Sea: In Situ Surveys of Aerobic Methanotrophs Using the Deep-Sea Environmental Sample Processor

William Ussler; Christina M. Preston; Patricia L. Tavormina; Doug Pargett; Scott Jensen; Brent Roman; Roman Marin; Sunita R. Shah; Peter R. Girguis; James M. Birch; Victoria J. Orphan; Christopher A. Scholin

Recent advances in ocean observing systems and genomic technologies have led to the development of the deep-sea environmental sample processor (D-ESP). The D-ESP filters particulates from seawater at depths up to 4000 m and applies a variety of molecular assays to the particulates, including quantitative PCR (qPCR), to identify particular organisms and genes in situ. Preserved samples enable laboratory-based validation of in situ results and expanded studies of genomic diversity and gene expression. Tests of the D-ESP at a methane-rich mound in the Santa Monica Basin centered on detection of 16S rRNA and particulate methane monooxygenase (pmoA) genes for two putative aerobic methanotrophs. Comparison of in situ qPCR results with laboratory-based assays of preserved samples demonstrates the D-ESP generated high-quality qPCR data while operating autonomously on the seafloor. Levels of 16S rRNA and pmoA cDNA detected in preserved samples are consistent with an active community of aerobic methanotrophs near the methane-rich mound. These findings are substantiated at low methane sites off Point Conception and in Monterey Bay where target genes are at or below detection limits. Successful deployment of the D-ESP is a major step toward developing autonomous systems to facilitate a wide range of marine microbiological investigations.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon

Anitra E. Ingalls; Sunita R. Shah; Roberta L. Hansman; Lihini I. Aluwihare; Guaciara M. Santos; Ellen R. M. Druffel; Ann Pearson


Geochimica et Cosmochimica Acta | 2008

Origins of archaeal tetraether lipids in sediments : insights from radiocarbon analysis

Sunita R. Shah; Gesine Mollenhauer; Naohiko Ohkouchi; Timothy I. Eglinton; Ann Pearson


Geochemistry Geophysics Geosystems | 2009

An interlaboratory study of TEX86 and BIT analysis using high‐performance liquid chromatography–mass spectrometry

Stefan Schouten; Ellen C. Hopmans; Jaap van der Meer; Anchelique Mets; Edouard Bard; Thomas S. Bianchi; Aaron F. Diefendorf; Marina Escala; K. Freeman; Yoshihiro Furukawa; Carme Huguet; Anitra E. Ingalls; Guillemette Ménot-Combes; Alexandra J. Nederbragt; Masahiro Oba; Ann Pearson; Emma J. Pearson; Antoni Rosell-Melé; Philippe Schaeffer; Sunita R. Shah; Timothy M. Shanahan; Richard W. Smith; Rienk H. Smittenberg; Helen M. Talbot; Masao Uchida; Benjamin A. S. Van Mooy; Masanobu Yamamoto; Zhaohui Zhang; Jaap S. Sinninghe Damsté


Deep-sea Research Part Ii-topical Studies in Oceanography | 2010

New Constraints on Methane Fluxes and Rates of Anaerobic Methane Oxidation in a Gulf of Mexico Brine Pool via In Situ Mass Spectrometry

Scott D. Wankel; Samantha B. Joye; Vladimir A. Samarkin; Sunita R. Shah; Gernot E. Friederich; John Melas-Kyriazi; Peter R. Girguis


Biogeosciences | 2013

Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the seawater–brine interface

Sunita R. Shah; Samantha B. Joye; Jay A. Brandes; Ann P. McNichol

Collaboration


Dive into the Sunita R. Shah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Mark Leckie

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Zhonghui Liu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge