Sunita Singh Dhawan
Central Institute of Medicinal and Aromatic Plants
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunita Singh Dhawan.
Journal of Biosciences | 1998
Ajit Kumar Shasany; Suman P. S. Khanujia; Sunita Singh Dhawan; Usha Yadav; Srikant Sharma; Sushil Kumar
Media and incubation conditions have been defined for highly efficient regeneration of shoots from internode explants of slow and fast growing cultivars ofMentha arvensis. Internodal segments excised from thein vitro raised shoots were inoculated on the MS medium supplemented with combinations of 5 concentrations of l-napthalene acetic acid (NAA) and 3 concentrations of 6-benzyl amino purine (BAP). The media containing 2 μg ml−1 NAA, 10 Μg ml−1 BAP and 1 μg ml−1 NAA, 5 μg ml−1 BAP proved best for shoot regeneration and growth responses on cv Himalaya and cv Kalka explants, respectively. In 12 weeks time, on average one explant of cv Himalaya produced about 200 shoots and that of cv Kalka produced about 180 shoots. The Himalaya explants required higher concentrations of NAA and BAP for high efficiency proliferation as compared to the Kalka explants. The experiments demonstrated that internodal tissue inMentha arvensis can be induced to obtain direct shoot regenerants with high efficiency. The analysis of the RAPD profiles of 100 regenerated plantlets each of cv Himalaya and Kalka showed more than 99.9% homogeneity in bands with respect to the parents.
Protoplasma | 2015
Sanchita; Ruchi Singh; Anand Mishra; Sunita Singh Dhawan; Pramod A. Shirke; Madan M. Gupta; Ashok Sharma
Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT–PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.
Protoplasma | 2014
Sanchita; Sunita Singh Dhawan; Ashok Sharma
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.
Protoplasma | 2016
Sunita Singh Dhawan; Preeti Shukla; Pankhuri Gupta; R. K. Lal
Ocimum (Lamiaceae) is an important source of essential oils and aroma chemicals especially eugenol, methyl eugenol, linalool, methyl chavicol etc. An elite evergreen hybrid has been developed from Ocimum kilimandscharicum and Ocimum basilicum, which demonstrated adaptive behavior towards cold stress. A comparative molecular analysis has been done through RAPD, AFLP, and ISSR among O. basilicum and O. kilimandscharicum and their evergreen cold-tolerant hybrid. The RAPD and AFLP analyses demonstrated similar results, i.e., the hybrid of O. basilicum and O. kilimandscharicum shares the same cluster with O. kilimandscharicum, while O. basilicum behaves as an outgroup, whereas in ISSR analysis, the hybrid genotype grouped in the same cluster with O. basilicum. Ocimum genotypes were analyzed and compared for their trichome density. There were distinct differences on morphology, distribution, and structure between the two kinds of trichomes, i.e., glandular and non-glandular. Glandular trichomes contain essential oils, polyphenols, flavonoids, and acid polysaccharides. Hair-like trichomes, i.e., non-glandular trichomes, help in keeping the frost away from the living surface cells. O. basilicum showed less number of non-glandular trichomes on leaves compared to O. kilimandscharicum and the evergreen cold-tolerant hybrid. Trichomes were analyzed in O. kilimandscharicum, O. basilicum, and their hybrid. An increased proline content at the biochemical level represents a higher potential to survive in a stress condition like cold stress. In our analysis, the proline content is quite higher in tolerant variety O. kilimandscharicum, low in susceptible variety O. basilicum, and intermediate in the hybrid. Gene expression analysis was done in O. basilicum, O. kilimandscharicum and their hybrid for TTG1, GTL1, and STICHEL gene locus which regulates trichome development and its formation and transcription factors WRKY and MPS involved in the regulation of plant responses to freezing and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species.
Genetics and Molecular Research | 2011
Sunita Singh Dhawan; G. K. Rai; M.P. Darokar; Raj Kishori Lal; H. O. Misra; Suman P. S. Khanuja
Velvet bean (Mucuna pruriens) seeds contain the catecholic amino acid L-DoPA (L-3,4-dihydroxyphenylalanine), which is a neurotransmitter precursor and used for the treatment of Parkinsons disease and mental disorders. The great demand for L-DoPA is largely met by the pharmaceutical industry through extraction of the compound from wild populations of this plant; commercial exploitation of this compound is hampered because of its limited availability. The trichomes present on the pods can cause severe itching, blisters and dermatitis, discouraging cultivation. We screened genetic stocks of velvet bean for the trichome-less trait, along with high seed yield and L-DoPA content. The highest yielding trichome-less elite strain was selected and indentified on the basis of a PCR-based DNA fingerprinting method (RAPD), using deca-nucleotide primers. A genetic similarity index matrix was obtained through multivariant analysis using Nei and Lis coefficient. The similarity coefficients were used to generate a tree for cluster analysis using the UPGMA method. Analysis of amplification spectra of 408 bands obtained with 56 primers allowed us to distinguish a trichome-less elite strain of M. pruriens.
International Journal of Radiation Biology | 2017
Susheel Kumar Singh; Deepti Yadav; R. K. Lal; Madan M. Gupta; Sunita Singh Dhawan
Abstract Purpose: To develop elite genotypes in Mucuna pruriens (L.) DC with high L-DOPA (L-3, 4 dihydroxyphenylalanine) yields, with non-itching characteristics and better adaptability by applying γ-irradiation. Molecular and chemical analysis was performed for screening based on specific characteristics desired for developing suitable genotypes. Materials and methods: Developed, mutant populations were analyzed for L-DOPA % in seeds through TLC (thin layer chromatography), and the results obtained were validated with the HPLC (High performance liquid chromatography). The DNA (Deoxyribonucleic acid) was isolated from the leaf at the initial stage and used for DNA polymorphism. RNA (Ribonucleic acid) was isolated from the leaf during maturity and used for expression analysis. Results: The selected mutant T-I-7 showed 5.7% L-DOPA content compared to 3.18% of parent CIM-Ajar. The total polymorphism obtained was 57% with the molecular marker analysis. The gene expression analysis showed higher fold change expression of the dopadecarboxylase gene (DDC) in control compared to selected mutants (T-I-7, T-II-23, T-IV-9, T-VI-1). Conclusion: DNA polymorphism was used for the screening of mutants for efficient screening at an early stage. TLC was found suitable for the large-scale comparative chemical analysis of L-DOPA. The expression profile of DDC clearly demonstrated the higher yields of L-DOPA in selected mutants developed by γ-irradiation in the seeds of the control.
Planta | 2018
Susheel Kumar Singh; Sunita Singh Dhawan; R. K. Lal; Karuna Shanker; Manju Singh
Main conclusionTranscriptome analysis and biochemical characterization of the putative l-3,4-dihydroxyphenylalanine (l-DOPA) pathway in Mucuna pruriens (L.) DC have been performed. Spatio-temporal quantification of the putative l-DOPA biosynthetic pathway genes and its correlation with respective metabolites was established. l-tyrosine, l-DOPA, and dopamine from all plant parts were quantified.The de novo transcriptome analysis was performed using leaves of the selected M. pruriens mutant T-IV-9 during maturity. The putative l-DOPA pathway and its regulatory genes were retrieved from transcriptome data and the l-DOPA pathway was biochemically characterized. The spatial and temporal gene expression for the l-DOPA pathway was identified with respect to the chemical constituents. l-tyrosine, l-DOPA, and dopamine contents were highest in leaves during maturity (about 170-day-old plants). The polyphenol oxidase (PPO) was highly expressed in tender stems (230-fold higher as compared to seeds) as well as a high l-DOPA content. The PPO gene was highly expressed in leaves (3367.93 in FPKM) with a 79-fold increase compared to control plants during maturity. l-DOPA was found in every part with varied levels. The highest l-DOPA content was found in mature dried seed (3.18–5.8%), whereas the lowest amount was recorded in mature and dried leaves. The reproductive parts of the plant had a higher amount of l-DOPA content (0.9–5.8%) compared to the vegetative parts (0.2–0.91%). Various amino acid transporters and permeases were expressed in M. pruriens. The transcripts of dopa decarboxylase (DDC) were found in almost all parts of the plant, but its higher content was limited to the leaf.
Plant Science | 2018
Ruchi Singh; Pankhuri Gupta; Furqan Khan; Susheel Kumar Singh; Sanchita; Tripti Mishra; Anil Kumar; Sunita Singh Dhawan; Pramod A. Shirke
In general medicinal plants grown under water limiting conditions show much higher concentrations of secondary metabolites in comparison to control plants. In the present study, Withania somnifera plants were subjected to water stress and data related to drought tolerance phenomenon was collected and a putative mechanistic concept considering growth responses, physiological behaviour, and metabolite content and gene expression aspects is presented. Drought induced metabolic and physiological responses as well as drastic decrease in CO2 uptake due to stomatal limitations. As a result, the consumption of reduction equivalents (NADPH2+) for CO2 assimilation via the calvin cycle declines significantly resulting in the generation of a large oxidative stress and an oversupply of antioxidant enzymes. Drought also results in the shifting of metabolic processes towards biosynthetic activities that consume reduction equivalents. Thus, biosynthesis of reduced compounds (isoprenoids, phenols and alkaloids) is enhanced. The dynamics of various metabolites have been discussed in the light of gene expression analysis of control and drought treated leaves. Gene encoding enzymes of pathways leading to glucose, fructose and fructan production, conversion of triose phosphates to hexoses and hexose phosphorylation were up-regulated in the drought stressed leaves. The down-regulated Calvin cycle genes were co-ordinately regulated with the down-regulation of chloroplast triosephosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Expression of gene encoding Squalene Synthase (SQS) was highly upregulated under drought stress which is responsible for the diversion of carbon flux towards withanolides biosynthesis from isoprenoid pathway.
Journal of Herbs, Spices & Medicinal Plants | 2018
Anand Mishra; Payal Jain; R. K. Lal; Sunita Singh Dhawan
ABSTRACT The stability and adaptability pattern of nine cultivars/varieties of Mentha arvensis, namely, Saksham, Kosi, Himalaya, Gomti, Sambhav, Kalka, Damroo, Kushal, and Shivalik, over three consecutive years was established. Genotype × environment interactions (G × Y) were different for characters, indicating that the genotypes had a varying linear response to environmental changes. Glandular trichome could be a key parameter over the years, and their ratio to nonglandular trichome for selection of stable cultivars with high essential oil yield. The cultivars Kosi and Himalaya were highly stable for essential oil yield, whereas cultivars Kosi, Himalaya, and Kalka showed good adaptability for glandular trichomes and their ratio to nonglandular trichomes. These cultivars were highly stable and promising for commercial exploitation.
Journal of Herbs, Spices & Medicinal Plants | 2018
Sunita Singh Dhawan; Pankhuri Gupta; Anand Mishra; Susheel Kumar Singh; Harmesh Singh Chauhan
ABSTRACT Eighteen Vetiveria zizanioides accessions were analyzed for genetic diversity by Random Amplified Polymorphic DNA (RAPD) including CIM-Vridhi, an elite released variety. Twenty MAP primers were used to detect the DNA polymorphism and a total of 152 bands were obtained, out of which 45 were monomorphic, 137 polymorphic, 15 unique bands and 73.1% polymorphism were estimated. The average polymorphic information content (PIC) value obtained with RAPD markers was 0.44; marker index (MI), effective multiplex ratio (EMR), and resolving power (RP) were 2.39, 5.09, and 22.3, respectively. Principal component analysis (PCA) derived for RAPD markers illustrated the first three principal coordinate components accounted for 76.75% of the genetic similarity variance.