Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunny Shin is active.

Publication


Featured researches published by Sunny Shin.


Immunity | 2008

Thymic Selection Determines γδ T Cell Effector Fate: Antigen-Naive Cells Make Interleukin-17 and Antigen-Experienced Cells Make Interferon γ

Kirk D. C. Jensen; Xiaoqin Su; Sunny Shin; Luke Li; Sawsan Youssef; Sho Yamasaki; Lawrence Steinman; Takashi Saito; Richard M. Locksley; Mark M. Davis; Nicole Baumgarth; Yueh-hsiu Chien

gammadelta T cells uniquely contribute to host immune defense, but how this is accomplished remains unclear. Here, we analyzed the nonclassical major histocompatibility complex class I T10 and T22-specific gammadelta T cells in mice and found that encountering antigen in the thymus was neither required nor inhibitory for their development. But when triggered through the T cell receptor, ligand-naive lymphoid-gammadelta T cells produced IL-17, whereas ligand-experienced cells made IFN-gamma. Immediately after immunization, a large fraction of IL-17(+) gammadelta T cells were found in the draining lymph nodes days before the appearance of antigen-specific IL-17(+) *beta T cells. Thus, thymic selection determines the effector fate of gammadelta T cells rather than constrains their antigen specificities. The swift IL-17 response mounted by antigen-naive gammadelta T cells suggests a critical role for these cells at the onset of an acute inflammatory response to novel antigens.


Infection and Immunity | 2009

Asc and Ipaf Inflammasomes Direct Distinct Pathways for Caspase-1 Activation in Response to Legionella pneumophila

Christopher L. Case; Sunny Shin; Craig R. Roy

ABSTRACT Caspase-1 activation is a key feature of the innate immune response of macrophages elicited by pathogens and a variety of toxins. Here, we determined the requirement for different adapter proteins involved in regulating host processes mediated by caspase-1 after macrophage infection by Legionella pneumophila. The adapter protein Asc was found to be important for caspase-1 activation during L. pneumophila infection. Activation of caspase-1 through Asc did not require the flagellin-sensing pathway involving the host nucleotide-binding domain and leucine-rich repeat-containing protein Ipaf (NLRC4). Asc-dependent caspase-1 activation was inhibited by high extracellular potassium levels, whereas Ipaf-dependent activation was unaffected by potassium treatment. Activation of caspase-1 in macrophages occurred independently of Nalp3 and proteasome activity, suggesting that a previously uncharacterized mechanism for caspase-1 activation through Asc may be triggered by L. pneumophila. Rapid pore formation and pyroptosis induced by L. pneumophila required caspase-1, Ipaf, and bacterial flagellin but occurred independently of Asc. Equivalent levels of active interleukin-18 (IL-18) were detected in the lungs of mice infected with a flagellin-deficient strain of L. pneumophila and Asc-deficient mice infected with wild-type L. pneumophila. Active IL-18 was undetectable in the lungs of Asc-deficient mice infected with an L. pneumophila flagellin mutant, indicating independent roles for Ipaf and Asc in caspase-1-mediated processing and release of IL-18 in vivo. Ipaf-dependent activation of caspase-1 restricted bacterial replication in vivo, whereas Asc was dispensable for restriction of L. pneumophila replication in mice. Thus, L. pneumophila-mediated caspase-1 activation involves the coordinate activities of inflammasomes differentially regulated by Ipaf and Asc.


Cellular Microbiology | 2008

Host cell processes that influence the intracellular survival of Legionella pneumophila.

Sunny Shin; Craig R. Roy

Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaires Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophilas survival and replication inside macrophages within a membrane‐bound compartment known as the Legionella‐containing vacuole. One of the virulence factors indispensable for L. pneumophilas intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER‐derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.


PLOS Pathogens | 2008

Type IV Secretion-Dependent Activation of Host MAP Kinases Induces an Increased Proinflammatory Cytokine Response to Legionella pneumophila

Sunny Shin; Christopher L. Case; Kristina A. Archer; Catarina V. Nogueira; Koichi S. Kobayashi; Richard A. Flavell; Craig R. Roy; Dario S. Zamboni

The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs) detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS), induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-κB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria.


PLOS Pathogens | 2013

Caspase-11 Activation in Response to Bacterial Secretion Systems that Access the Host Cytosol

Cierra N. Casson; Alan M. Copenhaver; Erin E. Zwack; Hieu Nguyen; Till Strowig; Bahar Javdan; William P. Bradley; Thomas C. Fung; Richard A. Flavell; Igor E. Brodsky; Sunny Shin

Inflammasome activation is important for antimicrobial defense because it induces cell death and regulates the secretion of IL-1 family cytokines, which play a critical role in inflammatory responses. The inflammasome activates caspase-1 to process and secrete IL-1β. However, the mechanisms governing IL-1α release are less clear. Recently, a non-canonical inflammasome was described that activates caspase-11 and mediates pyroptosis and release of IL-1α and IL-1β. Caspase-11 activation in response to Gram-negative bacteria requires Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor-inducing interferon-β (TRIF)-dependent interferon production. Whether additional bacterial signals trigger caspase-11 activation is unknown. Many bacterial pathogens use specialized secretion systems to translocate effector proteins into the cytosol of host cells. These secretion systems can also deliver flagellin into the cytosol, which triggers caspase-1 activation and pyroptosis. However, even in the absence of flagellin, these secretion systems induce inflammasome activation and the release of IL-1α and IL-1β, but the inflammasome pathways that mediate this response are unclear. We observe rapid IL-1α and IL-1β release and cell death in response to the type IV or type III secretion systems of Legionella pneumophila and Yersinia pseudotuberculosis. Unlike IL-1β, IL-1α secretion does not require caspase-1. Instead, caspase-11 activation is required for both IL-1α secretion and cell death in response to the activity of these secretion systems. Interestingly, whereas caspase-11 promotes IL-1β release in response to the type IV secretion system through the NLRP3/ASC inflammasome, caspase-11-dependent release of IL-1α is independent of both the NAIP5/NLRC4 and NLRP3/ASC inflammasomes as well as TRIF and type I interferon signaling. Furthermore, we find both overlapping and non-redundant roles for IL-1α and IL-1β in mediating neutrophil recruitment and bacterial clearance in response to pulmonary infection by L. pneumophila. Our findings demonstrate that virulent, but not avirulent, bacteria trigger a rapid caspase-11-dependent innate immune response important for host defense.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling.

Naomi H. Philip; Christopher P. Dillon; Annelise G. Snyder; Patrick Fitzgerald; Meghan A. Wynosky-Dolfi; Erin E. Zwack; Baofeng Hu; Louise FitzGerald; Elizabeth A. Mauldin; Alan M. Copenhaver; Sunny Shin; Lei Wei; Matthew Parker; Jinghui Zhang; Andrew Oberst; Douglas R. Green; Igor E. Brodsky

Significance Pathogenic organisms express virulence factors that can inhibit immune signaling pathways. Thus, the immune system is faced with the challenge of eliciting an effective inflammatory response to pathogens that actively suppress inflammation. The mechanisms that regulate this response are largely undefined. The Yersinia virulence factor YopJ blocks NF-κB and MAPK signaling, resulting in reduced cytokine production and target cell death. Here, we find that caspase-8, RIPK1, and FADD are required for YopJ-induced cell death and show that mice lacking caspase-8 are severely susceptible to Yersinia infection and have defective proinflammatory cytokine production. These findings highlight a possible mechanism of immune defense that can overcome pathogen inhibition of cell-intrinsic proinflammatory immune responses. Toll-like receptor signaling and subsequent activation of NF-κB– and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB–dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8–mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.


PLOS Pathogens | 2009

Rapid Pathogen-Induced Apoptosis: A Mechanism Used by Dendritic Cells to Limit Intracellular Replication of Legionella Pneumophila

Catarina V. Nogueira; Tullia Lindsten; Amanda M. Jamieson; Christopher L. Case; Sunny Shin; Craig B. Thompson; Craig R. Roy

Dendritic cells (DCs) are specialized phagocytes that internalize exogenous antigens and microbes at peripheral sites, and then migrate to lymphatic organs to display foreign peptides to naïve T cells. There are several examples where DCs have been shown to be more efficient at restricting the intracellular replication of pathogens compared to macrophages, a property that could prevent DCs from enhancing pathogen dissemination. To understand DC responses to pathogens, we investigated the mechanisms by which mouse DCs are able to restrict replication of the intracellular pathogen Legionella pneumophila. We show that both DCs and macrophages have the ability to interfere with L. pneumophila replication through a cell death pathway mediated by caspase-1 and Naip5. L. pneumophila that avoided Naip5-dependent responses, however, showed robust replication in macrophages but remained unable to replicate in DCs. Apoptotic cell death mediated by caspase-3 was found to occur much earlier in DCs following infection by L. pneumophila compared to macrophages infected similarly. Eliminating the pro-apoptotic proteins Bax and Bak or overproducing the anti-apoptotic protein Bcl-2 were both found to restore L. pneumophila replication in DCs. Thus, DCs have a microbial response pathway that rapidly activates apoptosis to limit pathogen replication.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens

Cierra N. Casson; Janet Yu; Valeria M. Reyes; Frances Taschuk; Anjana Yadav; Alan M. Copenhaver; Hieu Nguyen; Ronald G. Collman; Sunny Shin

Significance The innate immune system provides a first line of defense against invading pathogens. The inflammasome is an innate immune complex that activates inflammatory caspases upon infection, causing cell death and IL-1 cytokine release, which initiate defense against gram-negative bacterial pathogens but also mediate septic shock. Many inflammasome studies have been performed using cells from mice, but mice and humans differ in their complement of inflammatory caspases. Instead of caspase-11, humans encode the putative orthologs caspase-4 and caspase-5. Here, we show that caspase-4 plays a conserved role in inflammasome activation in response to virulent gram-negative pathogens in primary human macrophages. Our findings provide important insight into how inflammasomes are regulated in human cells. Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1β secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1–independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages.


Journal of Experimental Medicine | 2002

The D0 Domain of KIR3D Acts as a Major Histocompatibility Complex Class I Binding Enhancer

Salim I. Khakoo; Ron Geller; Sunny Shin; Jomaquai A. Jenkins; Peter Parham

In contrast to the KIR2D:HLA-C interaction, little is known of KIR3DL1s interaction with HLA-B or the role of D0, the domain not present in KIR2D. Differences in the strength and specificity for major histocompatibility complex class I of KIR3DL1 and its common chimpanzee homologue Pt-KIR3DL1/2 were exploited to address these questions. Domain-swap, deletion, and site-directed mutants of KIR3DL1 were analyzed for HLA-B binding using a novel, positively signaling cell–cell binding assay. Natural ‘deletion’ of residues 50 and 51 from its D0 domain causes Pt-KIR3DL1/2 to bind Bw4+ HLA-B allotypes more avidly than does KIR3DL1. Deletion of these residues from KIR3DL1, or their substitution for alanine, enhanced binding of Bw4+ HLA-B. None of 15 different point mutations in D0 abrogated KIR3DL1 binding to Bw4+ HLA-B. In contrast point mutations in the D1 and D2 domains of KIR3DL1, made from knowledge of KIR2D:HLA-C interactions, disrupted binding to Bw4+ HLA-B. The results are consistent with a model in which D1 and D2 make the principal contacts between KIR3DL1 and HLA-B while D0 acts through a different mechanism to enhance the interaction. This modulatory role for D0 is compatible with natural loss of expression of the D0 domain, a repeated event in the evolution of functional KIR genes.


Nature Immunology | 2008

An autonomous CDR3δ is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by γδ T cells

Erin J. Adams; Pavel Strop; Sunny Shin; Yueh-hsiu Chien; K. Christopher Garcia

It remains unclear whether γδ T cell receptors (TCRs) detect antigens in a manner similar to antibodies or αβ TCRs. Here we show that reactivity between G8 and KN6 γδ TCRs and the MHC class Ib molecule T22 can be transplanted, with retention of wild-type ligand affinity, after en bloc grafting of G8 and KN6 CDR3δ loops in place onto the CDR3α loop of an αβ TCR. We also find that a shared sequence motif within CDR3δ loops of all T22-reactive γδ TCRs binds T22 in energetically distinct fashions, and that T10d, which binds G8 with weak affinity, is converted into a high-affinity ligand by a single point mutation. These results demonstrate an unprecedented autonomy of a single CDR3 loop in antigen recognition.It remains unclear whether γδ T cell antigen receptors (TCRs) detect antigens in a way similar to antibodies or αβ TCRs. Here we show that reactivity between the G8 and KN6 γδ TCRs and the major histocompatibility complex class Ib molecule T22 could be recapitulated, with retention of wild-type ligand affinity, in an αβ TCR after grafting of a G8 or KN6 complementarity-determining region 3-δ (CDR3δ) loop in place of the CDR3α loop of an αβ TCR. We also found that a shared sequence motif in CDR3δ loops of all T22-reactive γδ TCRs bound T22 in energetically distinct ways, and that T10d, which bound G8 with weak affinity, was converted into a high-affinity ligand by a single point mutation. Our results demonstrate unprecedented autonomy of a single CDR3 loop in antigen recognition.

Collaboration


Dive into the Sunny Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cierra N. Casson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hieu Nguyen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Igor E. Brodsky

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin E. Zwack

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Fung

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge