Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suomeng Dong is active.

Publication


Featured researches published by Suomeng Dong.


Science | 2010

Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.

Laura Baxter; Sucheta Tripathy; Naveed Ishaque; Nico Boot; Adriana Cabral; Eric Kemen; Marco Thines; Audrey M. V. Ah-Fong; Ryan G. Anderson; Wole Badejoko; Peter D. Bittner-Eddy; Jeffrey L. Boore; Marcus C. Chibucos; Mary Coates; Paramvir Dehal; Kim D. Delehaunty; Suomeng Dong; Polly Downton; Bernard Dumas; Georgina Fabro; Catrina C. Fronick; Susan I. Fuerstenberg; Lucinda Fulton; Elodie Gaulin; Francine Govers; Linda Karen Hughes; Sean Humphray; Rays H. Y. Jiang; Howard S. Judelson; Sophien Kamoun

From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.


The Plant Cell | 2011

Transcriptional Programming and Functional Interactions within the Phytophthora sojae RXLR Effector Repertoire

Qunqing Wang; Changzhi Han; Adriana O. Ferreira; Xiaoli Yu; Wenwu Ye; Sucheta Tripathy; Shiv D. Kale; Biao Gu; Yuting Sheng; Yangyang Sui; Xiaoli Wang; Zhengguang Zhang; Baoping Cheng; Suomeng Dong; Weixing Shan; Xiaobo Zheng; Brett M. Tyler; Yuanchao Wang

This study presents a broad functional survey of a large sample of candidate RXLR effectors in the oomycete pathogen of soybean (Phytophthora sojae). Suppression of plant defense, transcription patterns, and polymorphisms were assayed. Essential effectors and effector subsets with distinct expression patterns and defense suppression activities were identified. The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.


PLOS Pathogens | 2011

The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae.

Min Guo; Yue Chen; Yan Du; Yanhan Dong; Wang Guo; Su Zhai; Haifeng Zhang; Suomeng Dong; Zhengguang Zhang; Yuanchao Wang; Ping Wang; Xiaobo Zheng

Saccharomyces cerevisiae Yap1 protein is an AP1-like transcription factor involved in the regulation of the oxidative stress response. An ortholog of Yap1, MoAP1, was recently identified from the rice blast fungus Magnaporthe oryzae genome. We found that MoAP1 is highly expressed in conidia and during invasive hyphal growth. The Moap1 mutant was sensitive to H2O2, similar to S. cerevisiae yap1 mutants, and MoAP1 complemented Yap1 function in resistance to H2O2, albeit partially. The Moap1 mutant also exhibited various defects in aerial hyphal growth, mycelial branching, conidia formation, the production of extracellular peroxidases and laccases, and melanin pigmentation. Consequently, the Moap1 mutant was unable to infect the host plant. The MoAP1-eGFP fusion protein is localized inside the nucleus upon exposure to H2O2, suggesting that MoAP1 also functions as a redox sensor. Moreover, through RNA sequence analysis, many MoAP1-regulated genes were identified, including several novel ones that were also involved in pathogenicity. Disruption of respective MGG_01662 (MoAAT) and MGG_02531 (encoding hypothetical protein) genes did not result in any detectable changes in conidial germination and appressorium formation but reduced pathogenicity, whereas the mutant strains of MGG_01230 (MoSSADH) and MGG_15157 (MoACT) showed marketed reductions in aerial hyphal growth, mycelial branching, and loss of conidiation as well as pathogenicity, similar to the Moap1 mutant. Taken together, our studies identify MoAP1 as a positive transcription factor that regulates transcriptions of MGG_01662, MGG_02531, MGG_01230, and MGG_15157 that are important in the growth, development, and pathogenicity of M. oryzae.


PLOS ONE | 2009

Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a

Dinah Qutob; Jennifer Tedman-Jones; Suomeng Dong; Kuflom Kuflu; Hai Pham; Yuanchao Wang; Shiv D. Kale; Felipe D. Arredondo; Brett M. Tyler; Mark Gijzen

The importance of segmental duplications and copy number variants as a source of genetic and phenotypic variation is gaining greater appreciation, in a variety of organisms. Now, we have identified the Phytophthora sojae avirulence genes Avr1a and Avr3a and demonstrate how each of these Avr genes display copy number variation in different strains of P. sojae. The Avr1a locus is a tandem array of four near-identical copies of a 5.2 kb DNA segment. Two copies encoding Avr1a are deleted in some P. sojae strains, causing changes in virulence. In other P. sojae strains, differences in transcription of Avr1a result in gain of virulence. For Avr3a, there are four copies or one copy of this gene, depending on the P. sojae strain. In P. sojae strains with multiple copies of Avr3a, this gene occurs within a 10.8 kb segmental duplication that includes four other genes. Transcriptional differences of the Avr3a gene among P. sojae strains cause changes in virulence. To determine the extent of duplication within the superfamily of secreted proteins that includes Avr1a and Avr3a, predicted RXLR effector genes from the P. sojae and the P. ramorum genomes were compared by counting trace file matches from whole genome shotgun sequences. The results indicate that multiple, near-identical copies of RXLR effector genes are prevalent in oomycete genomes. We propose that multiple copies of particular RXLR effectors may contribute to pathogen fitness. However, recognition of these effectors by plant immune systems results in selection for pathogen strains with deleted or transcriptionally silenced gene copies.


PLOS Pathogens | 2011

Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity

Suomeng Dong; Weixiao Yin; Guanghui Kong; Xinyu Yang; Dinah Qutob; Qinghe Chen; Shiv D. Kale; Yangyang Sui; Zhengguang Zhang; Xiaobo Zheng; Mark Gijzen; Brett M. Tyler; Yuanchao Wang

Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity.


Molecular Plant-microbe Interactions | 2010

The Basic Leucine Zipper Transcription Factor Moatf1 Mediates Oxidative Stress Responses and Is Necessary for Full Virulence of the Rice Blast Fungus Magnaporthe oryzae

Min Guo; Wang Guo; Yue Chen; Suomeng Dong; Xing Zhang; Haifeng Zhang; Wenwen Song; Wei Wang; Qi Wang; Ruili Lv; Zhengguang Zhang; Yuanchao Wang; Xiaobo Zheng

Magnaporthe oryzae is the causal agent of rice blast disease, leading to enormous losses of rice production. Here, we characterized a basic leucine zipper (bZIP) transcription factor, Moatf1, in M. oryzae, a homolog of Schizosaccharomyces pombe ATF/CREB that regulates the oxidative stress response. Moatf1 deletion caused retarded vegetative growth of mycelia, and the Moatf1 mutant exhibited higher sensitivity to hydrogen peroxide (H(2)O(2)) than did the wild-type strain. The mutant showed severely reduced activity of extracellular enzymes and transcription level of laccases and peroxidases and exhibited significantly reduced virulence on rice cultivar CO-39. On rice leaf sheath, most of the infectious hyphae of the mutant became swollen and displayed restricted growth in primary infected cells. Defense response was strongly activated in plants infected by the mutant. Diamino benzidine staining revealed an accumulation of H(2)O(2) around Moatf1 mutant appressoria and rice cells with Moatf1 hyphae that was absent in the wild type. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H(2)O(2) accumulation and restored infectious hyphal growth of the mutant in rice cells. Thus, we conclude that Moatf1 is necessary for full virulence of M. oryzae by regulating the transcription of laccases and peroxidases to impair reactive oxygen species-mediated plant defense.


PLOS ONE | 2009

The Phytophthora sojae Avirulence Locus Avr3c Encodes a Multi-Copy RXLR Effector with Sequence Polymorphisms among Pathogen Strains

Suomeng Dong; Dinah Qutob; Jennifer Tedman-Jones; Kuflom Kuflu; Yuanchao Wang; Brett M. Tyler; Mark Gijzen

Root and stem rot disease of soybean is caused by the oomycete Phytophthora sojae. The avirulence (Avr) genes of P. sojae control race-cultivar compatibility. In this study, we identify the P. sojae Avr3c gene and show that it encodes a predicted RXLR effector protein of 220 amino acids. Sequence and transcriptional data were compared for predicted RXLR effectors occurring in the vicinity of Avr4/6, as genetic linkage of Avr3c and Avr4/6 was previously suggested. Mapping of DNA markers in a F2 population was performed to determine whether selected RXLR effector genes co-segregate with the Avr3c phenotype. The results pointed to one RXLR candidate gene as likely to encode Avr3c. This was verified by testing selected genes by a co-bombardment assay on soybean plants with Rps3c, thus demonstrating functionality and confirming the identity of Avr3c. The Avr3c gene together with eight other predicted genes are part of a repetitive segment of 33.7 kb. Three near-identical copies of this segment occur in a tandem array. In P. sojae strain P6497, two identical copies of Avr3c occur within the repeated segments whereas the third copy of this RXLR effector has diverged in sequence. The Avr3c gene is expressed during the early stages of infection in all P. sojae strains examined. Virulent alleles of Avr3c that differ in amino acid sequence were identified in other strains of P. sojae. Gain of virulence was acquired through mutation and subsequent sequence exchanges between the two copies of Avr3c. The results illustrate the importance of segmental duplications and RXLR effector evolution in the control of race-cultivar compatibility in the P. sojae and soybean interaction.


Plant Physiology | 2011

Two Host Cytoplasmic Effectors Are Required for Pathogenesis of Phytophthora sojae by Suppression of Host Defenses

Tingli Liu; Wenwu Ye; Yanyan Ru; Xinyu Yang; Biao Gu; Kai Tao; Shan Lu; Suomeng Dong; Xiaobo Zheng; Weixing Shan; Yuanchao Wang

Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.


Journal of Experimental Botany | 2010

The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure

Huajian Zhang; Suomeng Dong; Meifang Wang; Wei Wang; Wenwen Song; Xianying Dou; Xiaobo Zheng; Zhengguang Zhang

Elicitors/pathogen-associated molecular patterns (PAMPs) trigger the plant immune system, leading to rapid programmed cell death (hypersensitive response, HR) and stomatal closure. Previous reports have shown that the vacuolar processing enzyme (VPE), a cysteine proteinase responsible for the maturation of vacuolar proteins, has caspase-1-like activity and mediates TMV- and mycotoxin-induced cell death. The role of VPE from Nicotiana benthamiana in the response to three elicitors: bacterial harpin, fungal Nep1, and oomycete boehmerin, is described here. Single-silenced (NbVPE1a or NbVPE1b) and dual-silenced (NbVPE1a/1b) N. benthamiana plants were produced by virus-induced gene silencing. Although NbVPE silencing does not affect H2O2 accumulation triggered by boehmerin, harpin, or Nep1, the HR is absent in NbVPE1a- and NbVPE1a/1b-silenced plants treated with harpin alone. However, NbVPE-silenced plants develop a normal HR after boehmerin and Nep1 treatment. These results suggest that harpin-triggered HR is VPE-dependent. Surprisingly, all gene-silenced plants show significantly impaired elicitor-induced stomatal closure and elicitor-promoted nitric oxide (NO) production in guard cells. Dual-silenced plants show increased elicitor-triggered AOS production in guard cells. The accumulation of transcripts associated with defence and cell redox is modified by VPE silencing in elicitor signalling. Overall, these results indicate that VPE from N. benthamiana functions not only in elicitor-induced HR, but also in elicitor-induced stomatal closure, suggesting that VPE may be involved in elicitor-triggered immunity.


PLOS ONE | 2010

R-SNARE Homolog MoSec22 Is Required for Conidiogenesis, Cell Wall Integrity, and Pathogenesis of Magnaporthe oryzae

Wenwen Song; Xianying Dou; Zhongqiang Qi; Qi Wang; Xing Zhang; Haifeng Zhang; Min Guo; Suomeng Dong; Zhengguang Zhang; Ping Wang; Xiaobo Zheng

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular vesicle fusion, which is an essential cellular process of the eukaryotic cells. To investigate the role of SNARE proteins in the rice blast fungus Magnaporthe oryzae, MoSec22, an ortholog of Saccharomyces cerevisiae SNARE protein Sec22, was identified and the MoSEC22 gene disrupted. MoSec22 restored a S. cerevisiae sec22 mutant in resistance to cell wall perturbing agents, and the ΔMosec22 mutant also exhibited defects in mycelial growth, conidial production, and infection of the host plant. Treatment with oxidative stress inducers indicated a breach in cell wall integrity, and staining and quantification assays suggested abnormal chitin deposition on the lateral walls of hyphae of the ΔMosec22 mutant. Furthermore, hypersensitivity to the oxidative stress correlates with the reduced expression of the extracellular enzymes peroxidases and laccases. Our study thus provides new evidence on the conserved function of Sec22 among fungal organisms and indicates that MoSec22 has a role in maintaining cell wall integrity affecting the growth, morphogenesis, and virulence of M. oryzae.

Collaboration


Dive into the Suomeng Dong's collaboration.

Top Co-Authors

Avatar

Yuanchao Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Zheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wenwu Ye

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhengguang Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guanghui Kong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yang Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mark Gijzen

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Kai Tao

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge