Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Supriya K. Saha is active.

Publication


Featured researches published by Supriya K. Saha.


Nature | 2006

Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response

Gagik Oganesyan; Supriya K. Saha; Beichu Guo; Jeannie Q. He; Arash Shahangian; Brian Zarnegar; Andrea K. Perry; Genhong Cheng

Type I interferon (IFN) production is a critical component of the innate defence against viral infections. Viral products induce strong type I IFN responses through the activation of Toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as protein kinase R (PKR). Here we demonstrate that cells lacking TRAF3, a member of the TNF receptor-associated factor family, are defective in type I IFN responses activated by several different TLRs. Furthermore, we show that TRAF3 associates with the TLR adaptors TRIF and IRAK1, as well as downstream IRF3/7 kinases TBK1 and IKK-ε, suggesting that TRAF3 serves as a critical link between TLR adaptors and downstream regulatory kinases important for IRF activation. In addition to TLR stimulation, we also show that TRAF3-deficient fibroblasts are defective in their type I IFN response to direct infection with vesicular stomatitis virus, indicating that TRAF3 is also an important component of TLR-independent viral recognition pathways. Our data demonstrate that TRAF3 is a major regulator of type I IFN production and the innate antiviral response.


Journal of Experimental Medicine | 2004

Type I Interferon Production Enhances Susceptibility to Listeria monocytogenes Infection

Ryan M. O'Connell; Supriya K. Saha; Sagar A. Vaidya; Kevin W. Bruhn; Gustavo A. Miranda; Brian Zarnegar; Andrea K. Perry; Bidong O. Nguyen; Timothy F. Lane; Tadatsugu Taniguchi; Jeff F. Miller; Genhong Cheng

Numerous bacterial products such as lipopolysaccharide potently induce type I interferons (IFNs); however, the contribution of this innate response to host defense against bacterial infection remains unclear. Although mice deficient in either IFN regulatory factor (IRF)3 or the type I IFN receptor (IFNAR)1 are highly susceptible to viral infection, we show that these mice exhibit a profound resistance to infection caused by the Gram-positive intracellular bacterium Listeria monocytogenes compared with wild-type controls. Furthermore, this enhanced bacterial clearance is accompanied by a block in L. monocytogenes–induced splenic apoptosis in IRF3- and IFNAR1-deficient mice. Thus, our results highlight the disparate roles of type I IFNs during bacterial versus viral infections and stress the importance of proper IFN modulation in host defense.


The EMBO Journal | 2006

Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif

Supriya K. Saha; Eric M. Pietras; Jeannie Q. He; Jason R. Kang; Su-Yang Liu; Gagik Oganesyan; Arash Shahangian; Brian Zarnegar; Travis L. Shiba; Yao Wang; Genhong Cheng

Upon recognition of viral infection, RIG‐I and Helicard recruit a newly identified adapter termed Cardif, which induces type I interferon (IFN)‐mediated antiviral responses through an unknown mechanism. Here, we demonstrate that TRAF3, like Cardif, is required for type I interferon production in response to intracellular double‐stranded RNA. Cardif‐mediated IFNα induction occurs through a direct interaction between the TRAF domain of TRAF3 and a TRAF‐interaction motif (TIM) within Cardif. Interestingly, while the entire N‐terminus of TRAF3 was functionally interchangeable with that of TRAF5, the TRAF domain of TRAF3 was not. Our data suggest that this distinction is due to an inability of the TRAF domain of TRAF5 to bind the TIM of Cardif. Finally, we show that preventing association of TRAF3 with this TIM by mutating two critical amino acids in the TRAF domain also abolishes TRAF3‐dependent IFN production following viral infection. Thus, our findings suggest that the direct and specific interaction between the TRAF domain of TRAF3 and the TIM of Cardif is required for optimal Cardif‐mediated antiviral responses.


Journal of Experimental Medicine | 2006

Rescue of TRAF3-null mice by p100 NF-κB deficiency

Jeannie Q. He; Brian Zarnegar; Gagik Oganesyan; Supriya K. Saha; Soh Yamazaki; Sean E. Doyle; Paul W. Dempsey; Genhong Cheng

Proper activation of nuclear factor (NF)–κB transcription factors is critical in regulating fundamental biological processes such as cell survival and proliferation, as well as in inflammatory and immune responses. Recently, the NF-κB signaling pathways have been categorized into the canonical pathway, which results in the nuclear translocation of NF-κB complexes containing p50, and the noncanonical pathway, which involves the induced processing of p100 to p52 and the formation of NF-κB complexes containing p52 (Bonizzi, G., and M. Karin. 2004. Trends Immunol. 25:280–288). We demonstrate that loss of tumor necrosis factor (TNF) receptor–associated factor 3 (TRAF3) results in constitutive noncanonical NF-κB activity. Importantly, TRAF3−/− B cells show ligand-independent up-regulation of intracellular adhesion molecule 1 and protection from spontaneous apoptosis during in vitro culture. In addition, we demonstrate that loss of TRAF3 results in profound accumulation of NF-κB–inducing kinase in TRAF3−/− cells. Finally, we show that the early postnatal lethality observed in TRAF3-deficient mice is rescued by compound loss of the noncanonical NF-κB p100 gene. Thus, these genetic data clearly demonstrate that TRAF3 is a critical negative modulator of the noncanonical NF-κB pathway and that constitutive activation of the noncanonical NF-κB pathway causes the lethal phenotype of TRAF3-deficient mice.


Nature | 2014

Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer

Supriya K. Saha; Christine A. Parachoniak; Krishna S. Ghanta; Julien Fitamant; Kenneth N. Ross; Mortada S. Najem; Sushma Gurumurthy; Esra A. Akbay; Daniela Sia; Helena Cornella; Oriana Miltiadous; Chad Walesky; Vikram Deshpande; Andrew X. Zhu; Katharine E. Yen; Kimberly Straley; Jeremy Travins; Janeta Popovici-Muller; Camelia Gliser; Cristina R. Ferrone; Udayan Apte; Josep M. Llovet; Kwok-Kin Wong; Sridhar Ramaswamy; Nabeel Bardeesy

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4α silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.


Journal of Biological Chemistry | 2006

Specificity of TRAF3 in its negative regulation of the noncanonical NF-κB pathway

Jeannie Q. He; Supriya K. Saha; Jason R. Kang; Brian Zarnegar; Genhong Cheng

Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are critical signaling adaptors downstream of many receptors in the TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. Whereas TRAF2, 5, and 6 are activators of the canonical NF-κB signaling pathway, TRAF3 is an inhibitor of the noncanonical NF-κB pathway. The contribution of the different domains in TRAFs to their respective functions remains unclear. To elucidate the structural and functional specificities of TRAF3, we reconstituted TRAF3-deficient cells with a series of TRAF3 mutants and assessed their abilities to restore TRAF3-mediated inhibition of the noncanonical NF-κB pathway as measured by NF-κB-inducing kinase (NIK) protein levels and processing of p100 to p52. We found that a structurally intact RING finger domain of TRAF3 is required for inhibition of the noncanonical NF-κB pathway. In addition, the three N-terminal domains, but not the C-terminal TRAF domain, of the highly homologous TRAF5 can functionally replace the corresponding domains of TRAF3 in suppression of the noncanonical NF-κB pathway. This functional specificity correlates with the specific binding of TRAF3, but not TRAF5, to the previously reported TRAF3 binding motif in NIK. Our studies suggest that both the RING finger domain activity and the specific binding of the TRAF domain to NIK are two critical components of TRAF3 suppression of NIK protein levels and the processing of p100 to p52.


Journal of Immunology | 2005

Immune Activation of Type I IFNs by Listeria monocytogenes Occurs Independently of TLR4, TLR2, and Receptor Interacting Protein 2 but Involves TANK-Binding Kinase 1

Ryan M. O’Connell; Sagar A. Vaidya; Andrea K. Perry; Supriya K. Saha; Paul W. Dempsey; Genhong Cheng

Type I IFNs are well established antiviral cytokines that have also been shown to be induced by bacteria. However, the signaling mechanisms regulating the activation of these cytokines during bacterial infections remain poorly defined. We show that although Gram-negative bacteria can activate the type I IFN pathway through TLR4, the intracellular Gram-positive bacterium Listeria monocytogenes (LM) can do so independently of TLR4 and TLR2. Furthermore, experiments using genetic mutants and chemical inhibitors suggest that LM-induced type I IFN activation occurs by an intracellular pathway involving the serine-threonine kinase TNFR-associated NF-κB kinase (TANK)-binding kinase 1 (TBK1). Interestingly, receptor-interacting protein 2, a component of the recently discovered nucleotide-binding oligomerization domain-dependent intracellular detection pathway, was not involved. Taken together, our data describe a novel signal transduction pathway involving TBK1 that is used by LM to activate type I IFNs. Additionally, we provide evidence that both the LM- and TLR-dependent pathways converge at TBK1 to activate type I IFNs, highlighting the central role of this molecule in modulating type I IFNs in host defense and disease.


Cancer Discovery | 2017

Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma

Lipika Goyal; Supriya K. Saha; Leah Y. Liu; Giulia Siravegna; Ignaty Leshchiner; Leanne G. Ahronian; Jochen K. Lennerz; Phuong Vu; Vikram Deshpande; Avinash Kambadakone; Benedetta Mussolin; Stephanie Reyes; Laura Henderson; Jiaoyuan Elisabeth Sun; Emily E. Van Seventer; Joseph M. Gurski; Sabrina Baltschukat; Barbara Schacher-Engstler; Louise Barys; Christelle Stamm; Pascal Furet; David P. Ryan; James R. Stone; A. John Iafrate; Gad Getz; Diana Graus Porta; Ralph Tiedt; Alberto Bardelli; Dejan Juric; Ryan B. Corcoran

Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.


Cell | 2016

SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b

Sita Kugel; Carlos Sebastian; Julien Fitamant; Kenneth N. Ross; Supriya K. Saha; Esha Jain; Adrianne D. Gladden; Kshitij S. Arora; Yasutaka Kato; Miguel Rivera; Sridhar Ramaswamy; Ruslan I. Sadreyev; Alon Goren; Vikram Deshpande; Nabeel Bardeesy; Raul Mostoslavsky

Chromatin remodeling proteins are frequently dysregulated in human cancer, yet little is known about how they control tumorigenesis. Here, we uncover an epigenetic program mediated by the NAD(+)-dependent histone deacetylase Sirtuin 6 (SIRT6) that is critical for suppression of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal malignancies. SIRT6 inactivation accelerates PDAC progression and metastasis via upregulation of Lin28b, a negative regulator of the let-7 microRNA. SIRT6 loss results in histone hyperacetylation at the Lin28b promoter, Myc recruitment, and pronounced induction of Lin28b and downstream let-7 target genes, HMGA2, IGF2BP1, and IGF2BP3. This epigenetic program defines a distinct subset with a poor prognosis, representing 30%-40% of human PDAC, characterized by reduced SIRT6 expression and an exquisite dependence on Lin28b for tumor growth. Thus, we identify SIRT6 as an important PDAC tumor suppressor and uncover the Lin28b pathway as a potential therapeutic target in a molecularly defined PDAC subset. PAPERCLIP.


Clinical Cancer Research | 2014

Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma

Darrell R. Borger; Lipika Goyal; Thomas Yau; Ronnie Tung-Ping Poon; Marek Ancukiewicz; Vikram Deshpande; David C. Christiani; Hannah M. Liebman; Hua Yang; Hyeryun Kim; Katharine Yen; Jason E. Faris; A. John Iafrate; Eunice L. Kwak; Jeffrey W. Clark; Jill N. Allen; Lawrence S. Blaszkowsky; Janet E. Murphy; Supriya K. Saha; Theodore S. Hong; Jennifer Y. Wo; Cristina R. Ferrone; Kenneth K. Tanabe; Nabeel Bardeesy; Kimberly Straley; Sam Agresta; David P. Schenkein; Leif W. Ellisen; David P. Ryan; Andrew X. Zhu

Purpose: Mutations in the IDH1 and IDH2 (IDH1/2) genes occur in approximately 20% of intrahepatic cholangiocarcinoma and lead to accumulation of 2-hydroxyglutarate (2HG) in the tumor tissue. However, it remains unknown whether IDH1/2 mutations can lead to high levels of 2HG circulating in the blood and whether serum 2HG can be used as a biomarker for IDH1/2 mutational status and tumor burden in intrahepatic cholangiocarcinoma. Experimental Design: We initially measured serum 2HG concentration in blood samples collected from 31 patients with intrahepatic cholangiocarcinoma in a screening cohort. Findings were validated across 38 resected patients with intrahepatic cholangiocarcinoma from a second cohort with tumor volume measures. Circulating levels of 2HG were evaluated relative to IDH1/2 mutational status, tumor burden, and a number of clinical variables. Results: Circulating levels of 2HG in the screening cohort were significantly elevated in patients with IDH1/2-mutant (median, 478 ng/mL) versus IDH1/2–wild-type (median, 118 ng/mL) tumors (P < 0.001). This significance was maintained in the validation cohort (343 ng/mL vs. 55 ng/mL, P < 0.0001) and levels of 2HG directly correlated with tumor burden in IDH1/2-mutant cases (P < 0.05). Serum 2HG levels ≥170 ng/mL could predict the presence of an IDH1/2 mutation with a sensitivity of 83% and a specificity of 90%. No differences were noted between the allelic variants IDH1 or IDH2 in regard to the levels of circulating 2HG. Conclusions: This study indicates that circulating 2HG may be a surrogate biomarker of IDH1 or IDH2 mutation status in intrahepatic cholangiocarcinoma and that circulating 2HG levels may correlate directly with tumor burden. Clin Cancer Res; 20(7); 1884–90. ©2014 AACR.

Collaboration


Dive into the Supriya K. Saha's collaboration.

Top Co-Authors

Avatar

Genhong Cheng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Wiese

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vikrom K. Dhar

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Brian Zarnegar

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge