Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surajit Banerjee is active.

Publication


Featured researches published by Surajit Banerjee.


Nature | 2014

X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors.

Thorsten Althoff; Ryan E. Hibbs; Surajit Banerjee; Eric Gouaux

Cys-loop receptors are neurotransmitter-gated ion channels that are essential mediators of fast chemical neurotransmission and are associated with a large number of neurological diseases and disorders, as well as parasitic infections. Members of this ion channel superfamily mediate excitatory or inhibitory neurotransmission depending on their ligand and ion selectivity. Structural information for Cys-loop receptors comes from several sources including electron microscopic studies of the nicotinic acetylcholine receptor, high-resolution X-ray structures of extracellular domains and X-ray structures of bacterial orthologues. In 2011 our group published structures of the Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in complex with the allosteric partial agonist ivermectin, which provided insights into the structure of a possibly open state of a eukaryotic Cys-loop receptor, the basis for anion selectivity and channel block, and the mechanism by which ivermectin and related molecules stabilize the open state and potentiate neurotransmitter binding. However, there remain unanswered questions about the mechanism of channel opening and closing, the location and nature of the shut ion channel gate, the transitions between the closed/resting, open/activated and closed/desensitized states, and the mechanism by which conformational changes are coupled between the extracellular, orthosteric agonist binding domain and the transmembrane, ion channel domain. Here we present two conformationally distinct structures of C. elegans GluCl in the absence of ivermectin. Structural comparisons reveal a quaternary activation mechanism arising from rigid-body movements between the extracellular and transmembrane domains and a mechanism for modulation of the receptor by phospholipids.


Journal of Biological Chemistry | 2012

Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants.

Bin Zhao; Li Lei; Norio Kagawa; Munirathinam Sundaramoorthy; Surajit Banerjee; Leslie D. Nagy; F. Peter Guengerich; Michael R. Waterman

Background: Steroid 21-hydroxylase deficiency accounts for ∼95% of individuals with congenital adrenal hyperplasia (CAH). Results: The bovine cytochrome P450 21A2 (CYP21A2) crystal structure complexed with the substrate 17-hydroxyprogesterone was determined to 3.0 Å resolution. Conclusion: The structure reveals the binding mode of two molecules of the steroid substrate and accurate residue locations in the protein. Significance: The structure of CYP21A2 enhances our understanding of CAH. Steroid 21-hydroxylase (cytochrome P450 21A2, CYP21A2) deficiency accounts for ∼95% of individuals with congenital adrenal hyperplasia, a common autosomal recessive metabolic disorder of adrenal steroidogenesis. The effects of amino acid mutations on CYP21A2 activity lead to impairment of the synthesis of cortisol and aldosterone and the excessive production of androgens. In order to understand the structural and molecular basis of this group of diseases, the bovine CYP21A2 crystal structure complexed with the substrate 17-hydroxyprogesterone (17OHP) was determined to 3.0 Å resolution. An intriguing result from this structure is that there are two molecules of 17OHP bound to the enzyme, the distal one being located at the entrance of the substrate access channel and the proximal one bound in the active site. The substrate binding features locate the key substrate recognition residues not only around the heme but also along the substrate access channel. In addition, orientation of the skeleton of the proximal molecule is toward the interior of the enzyme away from the substrate access channel. The 17OHP complex of CYP21A2 provides a good relationship between the crystal structure, clinical data, and genetic mutants documented in the literature, thereby enhancing our understanding of congenital adrenal hyperplasia. In addition, the location of certain CYP21A2 mutations provides general understanding of structure/function relationships in P450s.


Nature Structural & Molecular Biology | 2017

Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B

Ke Shi; Michael A. Carpenter; Surajit Banerjee; Nadine M. Shaban; Kayo Kurahashi; Daniel J. Salamango; Jennifer L. McCann; Gabriel J. Starrett; Justin V. Duffy; Özlem Demir; Rommie E. Amaro; Daniel A. Harki; Reuben S. Harris; Hideki Aihara

APOBEC-catalyzed cytosine-to-uracil deamination of single-stranded DNA (ssDNA) has beneficial functions in immunity and detrimental effects in cancer. APOBEC enzymes have intrinsic dinucleotide specificities that impart hallmark mutation signatures. Although numerous structures have been solved, mechanisms for global ssDNA recognition and local target-sequence selection remain unclear. Here we report crystal structures of human APOBEC3A and a chimera of human APOBEC3B and APOBEC3A bound to ssDNA at 3.1-Å and 1.7-Å resolution, respectively. These structures reveal a U-shaped DNA conformation, with the specificity-conferring −1 thymine flipped out and the target cytosine inserted deep into the zinc-coordinating active site pocket. The −1 thymine base fits into a groove between flexible loops and makes direct hydrogen bonds with the protein, accounting for the strong 5′-TC preference. These findings explain both conserved and unique properties among APOBEC family members, and they provide a basis for the rational design of inhibitors to impede the evolvability of viruses and tumors.


Biochemistry | 2015

Differential stabilities and sequence-dependent base pair opening dynamics of watson-crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine.

Marta W. Szulik; Pradeep S. Pallan; Boguslaw Nocek; Markus Voehler; Surajit Banerjee; Sonja C. Brooks; Andrzej Joachimiak; Martin Egli; Brandt F. Eichman; Michael P. Stone

5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5′-CG-3′ sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5′-T8X9G10-3′ sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A5:T8, whereas 5caC did not. At the oxidized base pair G4:X9, 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C3:G10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G4:X9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.


Journal of Nucleic Acids | 2010

Selective Incision of the alpha-N-Methyl-Formamidopyrimidine Anomer by Escherichia coli Endonuclease IV.

Plamen P. Christov; Surajit Banerjee; Michael P. Stone; Carmelo J. Rizzo

Formamidopyrimidines (Fapy) lesions result from ring opening of the imidazole portion of purines. Fapy lesions can isomerize from the natural β-anomeric stereochemistry to the α-configuration. We have unambiguously demonstrated that the α-methyl-Fapy-dG (MeFapy-dG) lesion is a substrate for Escherichia coli Endonuclease IV (Endo IV). Treatment of a MeFapy-dG-containing 24 mer duplex with Endo IV resulted in 36–40% incision. The catalytic efficiency of the incision was comparable to that of α-dG in the same duplex sequence. The α- and β-MeFapy-dG anomers equilibrate to ~21 : 79 ratio over ~3 days. Related studies with a duplex containing the α-Fapy-dG lesion derived from aflatoxin B1 epoxide (α-AFB-Fapy-dG) showed only low levels of incision. It is hypothesized that the steric bulk of the aflatoxin moiety interferes with the binding of the substrate to Endo IV and the incision chemistry.


Nature Structural & Molecular Biology | 2015

An ancient protein-DNA interaction underlying metazoan sex determination

Mark W. Murphy; John K. Lee; Sandra Rojo; Micah D. Gearhart; Kayo Kurahashi; Surajit Banerjee; Guy André Loeuille; Anu Bashamboo; Ken McElreavey; David Zarkower; Hideki Aihara; Vivian J. Bardwell

DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.


Nature | 2016

Crystal structure of the Rous sarcoma virus intasome

Zhiqi Yin; Ke Shi; Surajit Banerjee; Krishan K. Pandey; Sibes Bera; Duane P. Grandgenett; Hideki Aihara

Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNA remained elusive. Here we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.


Science | 2016

Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation

Vasileios I. Petrou; Carmen M. Herrera; Kathryn M. Schultz; Oliver B. Clarke; Jeremie Vendome; David Tomasek; Surajit Banerjee; Kanagalaghatta R. Rajashankar; Meagan Belcher Dufrisne; Brian Kloss; Edda Kloppmann; Burkhard Rost; Candice S. Klug; M. Stephen Trent; Lawrence Shapiro; Filippo Mancia

A bacterial defense mechanism Polymyxins are antibiotics that disrupt the bacterial cell membrane and are used to treat multidrug-resistant infections. A bacterial enzyme called ArnT can mediate resistance to polymyxins by transferring a sugar group from a lipid carrier to lipid A, a component of the bacterial outer membrane. Petrou et al. described structures of ArnT alone and in complex with a lipid carrier and identified a cavity where lipid A probably binds. Insights into the enzyme mechanism could be exploited to design drugs that combat polymyxin resistance. Science, this issue p. 608 Structural studies elucidate the mechanism of a reaction that contributes to antibiotic resistance in Gram-negative bacteria. Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-l-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.


ACS Medicinal Chemistry Letters | 2012

Substrate-Selective Inhibition of Cyclooxygenase-2: Development and Evaluation of Achiral Profen Probes

Matthew A. Windsor; Daniel J. Hermanson; Philip J. Kingsley; Shu Xu; Brenda C. Crews; Winnie Ho; Catherine M. Keenan; Surajit Banerjee; Keith A. Sharkey; Lawrence J. Marnett

Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid and the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamide (AEA). We recently reported that (R)-profens selectively inhibit endocannabinoid oxygenation but not arachidonic acid oxygenation. In this work, we synthesized achiral derivatives of five profen scaffolds and evaluated them for substrate-selective inhibition using in vitro and cellular assays. The size of the substituents dictated the inhibitory strength of the analogs, with smaller substituents enabling greater potency but less selectivity. Inhibitors based on the flurbiprofen scaffold possessed the greatest potency and selectivity, with desmethylflurbiprofen (3a) exhibiting an IC50 of 0.11 μM for inhibition of 2-AG oxygenation. The crystal structure of desmethylflurbiprofen complexed to mCOX-2 demonstrated a similar binding mode to other profens. Desmethylflurbiprofen exhibited a half-life in mice comparable to that of ibuprofen. The data presented suggest that achiral profens can act as lead molecules toward in vivo probes of substrate-selective COX-2 inhibition.


ChemMedChem | 2016

nido‐Dicarbaborate Induces Potent and Selective Inhibition of Cyclooxygenase‐2

Wilma Neumann; Shu Xu; Menyhárt B. Sárosi; Matthias Scholz; Brenda C. Crews; Kebreab Ghebreselasie; Surajit Banerjee; Lawrence J. Marnett; h.c. Evamarie Hey‐Hawkins

Carbaboranes are increasingly studied as pharmacophores, particularly as replacements for aromatic systems. However, especially ortho‐carbaborane is prone to degradation of the cluster, which hampers biological application. This study demonstrates that deboronation of the cluster may not only lead to a more active analogue, but can also improve the solubility and stability of a carbaborane‐containing inhibitor. Notably, introduction of a nido‐dicarbaborate cluster into the cyclooxygenase (COX) inhibitor indomethacin results in remarkably increased inhibitory potency and selectivity for COX‐2 relative to the respective phenyl analogue. The first crystal structure of a carbaborane‐containing inhibitor bound to COX‐2 further reveals a novel binding mode for the inhibitor that is strikingly different from that of indomethacin. These results indicate that nido‐dicarbaborate is a promising pharmacophore that exhibits properties which are also highly beneficial for its introduction into other inhibitor classes.

Collaboration


Dive into the Surajit Banerjee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debasish Chattopadhyay

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge