Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surajit Bhattacharjee is active.

Publication


Featured researches published by Surajit Bhattacharjee.


Environmental Science and Pollution Research | 2016

Microbial siderophores and their potential applications: a review

Maumita Saha; Subhasis Sarkar; Biplab Sarkar; Bipin Kumar Sharma; Surajit Bhattacharjee; Prosun Tribedi

Siderophores are small organic molecules produced by microorganisms under iron-limiting conditions which enhance the uptake of iron to the microorganisms. In environment, the ferric form of iron is insoluble and inaccessible at physiological pH (7.35–7.40). Under this condition, microorganisms synthesize siderophores which have high affinity for ferric iron. These ferric iron-siderophore complexes are then transported to cytosol. In cytosol, the ferric iron gets reduced into ferrous iron and becomes accessible to microorganism. In recent times, siderophores have drawn much attention due to its potential roles in different fields. Siderophores have application in microbial ecology to enhance the growth of several unculturable microorganisms and can alter the microbial communities. In the field of agriculture, different types of siderophores promote the growth of several plant species and increase their yield by enhancing the Fe uptake to plants. Siderophores acts as a potential biocontrol agent against harmful phyto-pathogens and holds the ability to substitute hazardous pesticides. Heavy-metal-contaminated samples can be detoxified by applying siderophores, which explicate its role in bioremediation. Siderophores can detect the iron content in different environments, exhibiting its role as a biosensor. In the medical field, siderophore uses the “Trojan horse strategy” to form complexes with antibiotics and helps in the selective delivery of antibiotics to the antibiotic-resistant bacteria. Certain iron overload diseases for example sickle cell anemia can be treated with the help of siderophores. Other medical applications of siderophores include antimalarial activity, removal of transuranic elements from the body, and anticancer activity. The aim of this review is to discuss the important roles and applications of siderophores in different sectors including ecology, agriculture, bioremediation, biosensor, and medicine.


Archives of Microbiology | 2016

Biofilm, pathogenesis and prevention—a journey to break the wall: a review

Priya Gupta; Subhasis Sarkar; Bannhi Das; Surajit Bhattacharjee; Prosun Tribedi

Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.


Scientific Reports | 2016

Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

Manash C. Das; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal Chandra De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.


Environmental Science and Pollution Research | 2017

Biofertilizers: a potential approach for sustainable agriculture development

Trishna Mahanty; Surajit Bhattacharjee; Madhurankhi Goswami; Purnita Bhattacharyya; Bannhi Das; Abhrajyoti Ghosh; Prosun Tribedi

The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.


Nanoscale Research Letters | 2015

Selenium Nanoparticles for Stress-Resilient Fish and Livestock

Biplab Sarkar; Surajit Bhattacharjee; Akshay Daware; Prosun Tribedi; K.K. Krishnani; P. S. Minhas

The fisheries and livestock sectors capture the highest share of protein-rich animal food and demonstrate accelerated growth as an agriculture subsidiary. Environmental pollution, climate change, as well as pathogenic invasions exert increasing stress impacts that lead the productivity momentum at a crossroads. Oxidative stress is the most common form of stress phenomenon responsible for the retardation of productivity in fisheries and livestock. Essential micronutrients play a determinant role in combating oxidative stress. Selenium, one of the essential micronutrients, appears as a potent antioxidant with reduced toxicity in its nanoscale form. In the present review, different methods of synthesis and characterization of nanoscale selenium have been discussed. The functional characterization of nano-selenium in terms of its effect on growth patterns, feed digestibility, and reproductive system has been discussed to elucidate the mechanism of action. Moreover, its anti-carcinogenic and antioxidant potentiality, antimicrobial and immunomodulatory efficacy, and fatty acid reduction in liver have been deciphered as the new phenomena of nano-selenium application. Biologically synthesized nano-selenium raises hope for pharmacologically enriched, naturally stable nanoscale selenium with high ecological viability. Hence, nano-selenium can be administered with commercial feeds for improvising stress resilience and productivity of fish and livestock.


European Journal of Medicinal Chemistry | 2014

New flavonol methyl ether from the leaves of Vitex peduncularis exhibits potential inhibitory activity against Leishmania donovani through activation of iNOS expression.

Prasenjit Rudrapaul; Indrajit Sil Sarma; Niranjan Das; Utpal Chandra De; Surajit Bhattacharjee; Biswanath Dinda

One new flavonol methyl ether (1), along with four known compounds from the leaves of methanol extract of Vitex peduncularis Wall and three known compounds from the leaves of methanol extract of Vitex pinnata Linn (Verbenaceae) were isolated. The chemical structure of the new compound was established by detailed spectroscopic studies. The in vitro antileishmanial activities of 1 against both Leishmania donovani promastigote and amastigote forms were evaluated. To characterize the effector mechanism of compound 1 against Leishmania parasite infected THP-1 macrophage cells, RT-PCR analysis of inducible nitric oxide synthase 2 (iNOS2) was done followed by measurement of nitric oxide generation by Griess reaction. Pentostam (sodium antimonygluconate) was used as reference drug. Compound 1 exhibited better antileishmanial activity than sodium antimonygluconate (SAG) (having IC50 values for promastigote, 2.4 and 58.5 μM and for amastigotes, 0.93 and 36.2 μM, respectively). Compound 1 was less toxic than SAG towards THP-1 having CC50 of 123.7 μM and 364.3 μM, respectively. Moreover, compound 1 was found to induce a potent host-protective response by enhancing NO generation and iNOS2 expression in infected macrophages to prevent the progression of Leishmania parasite.


Inflammation Research | 2017

Prolonged inflammatory microenvironment is crucial for pro-neoplastic growth and genome instability: a detailed review.

Kumari Anuja; Souvick Roy; Chinmoy Ghosh; Priya Gupta; Surajit Bhattacharjee; Birendranath Banerjee

IntroductionChronic inflammation can affect the normal cell homeostasis and metabolism by rendering the cells susceptible to genomic instability that may lead to uncontrolled cellular growth and proliferation ensuing tumorigenesis. The causal agents for inflammation may be pathogenic infections like microbial agents ranging from viruses to bacteria. These infections lead to DNA damage or disruption of normal cell metabolism and alter the genome integrity.FindingsIn this review, we have highlighted the role of recurrent infections in tumor microenvironment can lead to recruitment of pro-inflammatory cells, cytokines and growth factors to the site of inflammation. This makes the environment rich in cytokines, chemokines, DNA-damaging agents (ROS, RNS) and growth factors which activate DNA damage response pathway and help in sustained proliferation of the tumor cells. In any inflammatory response, the production of cytokines and related signaling molecules is self-regulating and limiting. But in case of neoplastic risk, deregulation of these factors may lead to abnormalities and related pathogenesis.ConclusionThe scope of the present review is to explore the probable mechanistic link and factors responsible for chronic inflammation. The relation between chronic inflammation and DNA damage response was further elucidated to understand the mechanism by which it makes the cells susceptible to carcinogenesis.


Journal of Applied Microbiology | 2016

3‐Amino‐4‐aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa

Manash C. Das; Saurav Paul; Priya Gupta; Prosun Tribedi; Subhasis Sarkar; Debasis Manna; Surajit Bhattacharjee

The therapeutic treatment of microbial infections involving biofilm becomes quite challenging because of its increasing antibiotic resistance capacities. Towards this direction, in the present study we have evaluated the antibiofilm property of synthesized 3‐amino‐4‐aminoximidofurazan compounds having polyamine skeleton. These derivatives were synthesized by incorporating furazan and biguanide moieties.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2015

Optimization of the sublethal dose of silver nanoparticle through evaluating its effect on intestinal physiology of Nile tilapia (Oreochromis niloticus L.).

Biplab Sarkar; Mayuree Jaisai; Arabinda Mahanty; Pragnya Panda; Mohammad Sadique; B. B. Nayak; G. Gallardo; D. Thakur; Surajit Bhattacharjee; Joydeep Dutta

Silver nanoparticles (SNPs) are widely used in a variety of biomedical and consumer products as an antimicrobial additive. The present study was conducted to evaluate the impacts of low-dose SNPs on intestinal physiology of tilapia (Oreochromis niloticus L.) for assessing its apparent environmental risk due to extensive commercial use. SNPs were synthesized by a chemical reduction method yielding 1–27 nm oval shaped particles. Early fingerlings of tilapia were exposed with two sublethal concentrations (0.8 and 0.4 mg L−1) of SNPs for twenty one days period and its impact on the intestinal physiology was evaluated by histochemistry, catalase expression, glutamate dehydrogenase activity, SDS-PAGE and gut micro flora count. Histological analysis showed thinning of intestinal wall, swelling on mucosal layer and immunohistochemical assay exhibited an enhanced catalase expression in SNPs treated fishes. Gut microflora count elicited a dose-dependent depletion and a variable SDS-PAGE profile followed by significant (P < 0.05) elevations in glutamate dehydrogenase activity in SNPs-treated fishes. This study was designed to provide a better understanding of environmentally acceptable, dose-dependent SNPs delivery in fishes and to formulate guidelines in aquatic toxicology.


International Journal of Antimicrobial Agents | 2017

Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa

Antu Das; Junaid Jibran Jawed; Manash C. Das; Padmani Sandhu; Utpal Chandra De; Biswanath Dinda; Yusuf Akhter; Surajit Bhattacharjee

Visceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis, caused by the protozoan parasite Leishmania donovani. Nowadays there is a growing interest in the therapeutic use of natural products to treat parasitic diseases. Sterculia villosa is an ethnomedicinally important plant. A triterpenoid was isolated from this plant and was screened for its antileishmanial and immunomodulatory activities in vitro and in vivo. Biochemical colour test and spectroscopic data confirmed that the isolated pure compound was lupeol. Lupeol exhibited significant antileishmanial activity, with IC50 values of 65 ± 0.41 µg/mL and 15 ± 0.45 µg/mL against promastigote and amastigote forms, respectively. Lupeol caused maximum cytoplasmic membrane damage of L. donovani promastigote at its IC50 dose. It is well known that during infection the Leishmania parasite exerts its pathogenicity in the host by suppressing nitric oxide (NO) production and inhibiting pro-inflammatory responses. It was observed that lupeol induces NO generation in L. donovani-infected macrophages, followed by upregulation of pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Lupeol was also found to reduce the hepatic and splenic parasite burden through upregulation of the pro-inflammatory response in L. donovani-infected BALB/c mice. Strong binding affinity of lupeol was observed for four major potential drug targets, namely pteridine reductase 1, adenine phosphoribosyltransferase, lipophosphoglycan biosynthetic protein and glycoprotein 63 of L. donovani, which also supported its antileishmanial and immunomodulatory activities. Therefore, the present study highlights the antileishmanial and immunomodulatory activities of lupeol in an in vitro and in vivo model of VL.

Collaboration


Dive into the Surajit Bhattacharjee's collaboration.

Top Co-Authors

Avatar

Prosun Tribedi

Assam Don Bosco University

View shared research outputs
Top Co-Authors

Avatar

Yusuf Akhter

Babasaheb Bhimrao Ambedkar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Padmani Sandhu

Central University of Himachal Pradesh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge