Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sureewan Duangjit is active.

Publication


Featured researches published by Sureewan Duangjit.


Journal of drug delivery | 2011

Characterization and In Vitro Skin Permeation of Meloxicam-Loaded Liposomes versus Transfersomes

Sureewan Duangjit; Praneet Opanasopit; Theerasak Rojanarata; Tanasait Ngawhirunpat

The goal of this study was to develop and evaluate the potential use of liposome and transfersome vesicles in the transdermal drug delivery of meloxicam (MX). MX-loaded vesicles were prepared and evaluated for particle size, zeta potential, entrapment efficiency (%EE), loading efficiency, stability, and in vitro skin permeation. The vesicles were spherical in structure, 90 to 140 nm in size, and negatively charged (−23 to −43 mV). The %EE of MX in the vesicles ranged from 40 to 70%. Transfersomes provided a significantly higher skin permeation of MX compared to liposomes. Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analysis indicated that the application of transfersomes significantly disrupted the stratum corneum lipid. Our research suggests that MX-loaded transfersomes can be potentially used as a transdermal drug delivery system.


Aaps Pharmscitech | 2013

Evaluation of Meloxicam-Loaded Cationic Transfersomes as Transdermal Drug Delivery Carriers

Sureewan Duangjit; Praneet Opanasopit; Theerasak Rojanarata; Tanasait Ngawhirunpat

The aim of this study is to develop meloxicam (MX)-loaded cationic transfersomes as skin delivery carriers and to investigate the influence of formulation factors such as cholesterol and cationic surfactants on the physicochemical properties of transfersomes (i.e., particle size, size distribution, droplet surface charge and morphology), entrapment efficiency, stability of formulations and in vitro skin permeation of MX. The transfersomes displayed a spherical structure. Their size, charge, and entrapment efficiency depended on the composition of cholesterol and cationic surfactants in the formulation. Transfersomes provided greater MX skin permeation than conventional liposomes and MX suspensions. The penetration-enhancing mechanism of skin permeation by the vesicles prepared in this study may be due to the vesicle adsorption to and/or fusion with the stratum corneum. Our results suggest that cationic transfersomes may be promising dermal delivery carriers of MX.


International Journal of Nanomedicine | 2014

Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes

Sureewan Duangjit; Boonnada Pamornpathomkul; Praneet Opanasopit; Theerasak Rojanarata; Yasuko Obata; Kozo Takayama; Tanasait Ngawhirunpat

The objective of this study was to investigate the influence of surfactant charge, surfactant carbon chain length, and surfactant content on the physicochemical characteristics (ie, vesicle size, zeta potential, elasticity, and entrapment efficiency), morphology, stability, and in vitro skin permeability of meloxicam (MX)-loaded liposome. Moreover, the mechanism for the liposome-enhanced skin permeation of MX was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The model formulation used in this study was obtained using a response surface method incorporating multivariate spline interpolation (RSM-S). Liposome formulations with varying surfactant charge (anionic, neutral, and cationic), surfactant carbon chain length (C4, C12, and C16), and surfactant content (10%, 20%, and 29%) were prepared. The formulation comprising 29% cationic surfactant with a C16 chain length was found to be the optimal liposome for the transdermal delivery of MX. The skin permeation flux of the optimal formulation was 2.69-fold higher than that of a conventional liposome formulation. Our study revealed that surfactants affected the physicochemical characteristics, stability, and skin permeability of MX-loaded liposomes. These findings provide important fundamental information for the development of liposomes as transdermal drug delivery systems.


Journal of Liposome Research | 2012

Ultradeformable liposomes with terpenes for delivery of hydrophilic compound

Thirapit Subongkot; Sureewan Duangjit; Theerasak Rojanarata; Praneet Opanasopit; Tanasait Ngawhirunpat

Ultradeformable liposomes containing penetration enhancers were created to deliver NaFl. Vesicles were investigated for their particle size, zeta potential, NaFl entrapment efficiency (%EE), loading efficiency, and in vitro skin penetration. The vesicles obtained were spherical in shape, with a particle size of less than 100 nm and a negative surface charge (–6 to –11 mV). The %EE of NaFl loaded in vesicles ranged from 37 to 48%. Ultradeformable liposomes with monoterpenes (d-limonene, 1,8-cineole and geraniol) significantly improved NaFl penetration through the skin. Confocal laser scanning microscopy analysis confirmed skin-penetration results and was used to evaluate the behavior of hydrophilic compounds penetrating through the skin.


Biological & Pharmaceutical Bulletin | 2016

Skin Transport of Hydrophilic Compound-Loaded PEGylated Lipid Nanocarriers: Comparative Study of Liposomes, Niosomes, and Solid Lipid Nanoparticles

Worranan Rangsimawong; Praneet Opanasopit; Theerasak Rojanarata; Sureewan Duangjit; Tanasait Ngawhirunpat

The effect of surface grafting with N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG2000-DSPE) onto three types of lipid nanocarriers, liposomes, niosomes and solid lipid nanoparticles (SLNs) on the skin penetration of sodium fluorescein (NaFI) was investigated. Confocal laser scanning microscopy (CLSM) was used to visualize the penetration pathways. Fourier transform infrared spectroscopy (FT-IR) was used to determine the skin hydration. The results showed that the physicochemical properties of each nanocarrier were modified after PEG grafting. In the skin penetration study, PEG grafting increased the flux of NaFI-loaded PEGylated liposomes and significantly decreased the flux of NaFI-loaded PEGylated niosomes and NaFI-loaded PEGylated SLNs. The skin deposition study and CLSM images showed that the intact liposome vesicles permeated into the skin. The niosomes and SLNs had little or no vesicles in the skin, suggesting that NaFI may have been released from these nanocarriers before permeation. Additionally, the fluorescent CLSM images of the SLNs showed that NaFI deposited along the length of hair follicles inside the skin, indicating that the skin penetration route may be through the transfollicular pathway. For the PEGylated nanocarriers, the PEGylated liposomes had higher fluorescence intensities than the non-PEGylated liposomes, indicating higher NaFI concentrations. The PEGylated niosomes and PEGylated SLNs had lower fluorescence intensities than those of the non-PEG modified niosomes and SLNs. For FT-IR results, PEGylated liposomes increased the skin hydration, while the grafting PEG onto niosomes and SLN surfaces decreased the skin hydration. This study showed that the surface grafting of PEG onto various nanocarriers affected the skin transport of NaFI.


Pharmaceutical Development and Technology | 2015

Application of Design Expert for the investigation of capsaicin-loaded microemulsions for transdermal delivery

Sureewan Duangjit; Wisuta Chairat; Praneet Opanasopit; Theerasak Rojanarata; Tanasait Ngawhirunpat

Abstract Our previous study reported that the Design Expert® Software showed a beneficial role in the development of microemulsions (ME) for transdermal drug delivery. To fully confirm the reproducibility and the reliability of simultaneous optimal ME formulations, the optimal ME formulations predicted by the Design Expert® Software were experimentally formulated and verified for their skin permeability. Ternary phase diagrams were used to predict the optimal ME area, and the ME formulations selected from outside this area were considered as candidate ME systems. Our ME systems were formulated with isopropyl myristate (IPM) as the oil phase, cocamide diethanolamine (DEA) as the surfactant, ethanol as a co-surfactant and water as the aqueous phase. The droplet size, size distribution, electrical conductivity, pH, drug content and skin permeability of the candidate ME systems were monitored. Our findings indicated that the skin permeability of the optimal ME and all of the candidate ME formulations was significantly greater than that of the commercial capsaicin (CAP) product. Our study succeeded in predicting and developing the ME systems for the transdermal delivery of CAP. The simplex lattice design used in this study is experimentally useful for the development of pharmaceutical formulations.


Biological & Pharmaceutical Bulletin | 2016

Development, Characterization and Skin Interaction of Capsaicin-Loaded Microemulsion-Based Nonionic Surfactant

Sureewan Duangjit; Wisuta Chairat; Praneet Opanasopit; Theerasak Rojanarata; Suwannee Panomsuk; Tanasait Ngawhirunpat

The aim of this study was to develop novel microemulsions (MEs) for the transdermal delivery of capsaicin. Microemulsion-based nonionic surfactants consisting of isopropyl myristate as the oil phase, various nonionic surfactants as the surfactant (S), various glycols or alcohol as the co-surfactant (CoS), and reverse osmosis water as the aqueous phase were formulated. Based on the optimal ME obtained from Design Expert, MEs containing a fixed concentration of oil, water or surfactant were prepared while varying the amounts of the other two fractions. The results indicated that the skin permeation flux of low dose capsaicin (0.15% (w/w)) was significantly higher for the selected ME than the commercial product and capsaicin in ethanol (control) by approximately two- and four-fold, respectively. We successfully demonstrated the feasibility of the transdermal delivery of capsaicin-loaded ME using a low concentration of nonionic surfactant and ethanol. Moreover, the optimization using computer program helped to simplify the development of a pharmaceutical product.


Advanced Materials Research | 2011

Effect of Edge Activator on Characteristic and in Vitro Skin Permeation of Meloxicam Loaded in Elastic Liposomes

Sureewan Duangjit; Praneet Opanasopit; Theerasak Rojanarata; Tanasait Ngawhirunpat

The aim of this study was to prepare and investigate the potential use of liposomes in the transdermal drug delivery of meloxicam (MX). The vesicles containing a constant amount of MX, phosphatidylcholine (PC), cholesterol (Chol) and cetylpyridinium chloride (CPC) (1:5:1:1 MX/PC/Chol/CPC molar ratio) to obtain liposomes. MX loaded liposomes were investigated for particle size, zeta potential, entrapment efficiency (%EE) and in vitro skin permeation. The results indicated that the liposomes were spherical in structure, 77 to 100 nm in size and charged. The %EE of MX in the vesicles ranged from 55 to 56%. The elastic liposomes consisting of MX/PC/Chol/CPC provided a significantly higher skin permeation of MX compared to the other formulations. Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analysis indicated that the application of liposomes may disrupt the stratum corneum lipid. Our research suggests that MX loaded elastic liposomes can be potentially used as a transdermal drug delivery system.


Carbohydrate Polymers | 2018

Optimization of orodispersible and conventional tablets using simplex lattice design: Relationship among excipients and banana extract

Sureewan Duangjit; Pakorn Kraisit

The objective of this study was focused on the optimization of the pharmaceutical excipients and banana extract in the preparation of orally disintegrating banana extract tablets (OD-BET) and conventional banana extract tablets (CO-BET) using a simplex lattice design. Various ratios of banana extract (BE), dibasic calcium phosphate (DCP) and microcrystalline cellulose (MCC) were used to prepare banana extract tablets (BET). The results indicated that the optimal OD-BET and CO-BET consisted of BE: DCP: MCC at 10.0, 88.8, 1.2, 10.0, 83.8: and 6.2, respectively. AFM demonstrated that the surface of BET with BE + MCC was smooth and compacted when compared to BET with BE + DCP + MCC and BE + DCP. FTIR and XRD showed a correlation in the results and indicated that no interaction of each ingredient occurred in the process of BET formulation. Therefore, the experimental design is potentially useful in formulated OD-BET and CO-BET by using only one design simultaneously.


Drug Development and Industrial Pharmacy | 2017

Computational design strategy: an approach to enhancing the transdermal delivery of optimal capsaicin-loaded transinvasomes

Sureewan Duangjit; Tassanan Nimcharoenwan; Nutcha Chomya; Natthaporn Locharoenrat; Tanasait Ngawhirunpat

Abstract The aim of this study was to design and develop simultaneous optimal transinvasome formulations (OTV) to enhance the transdermal delivery of capsaicin. Using a central composite experimental design with duplicate centroids, 10 model formulations of transinvasomes (TVs) were demonstrated. The lipid compositions of the TV formulations were determined as formulation factors (Xn) and response variables (Yn), respectively. TV formulations containing a constant concentration of phosphatidylcholine, cholesterol, 0.15% capsaicin, and various percentages of d-limonene (X1) and cocamide diethanolamine (X2) were prepared. The physicochemical characteristics, e.g. the vesicle size, size distribution, zeta potential, entrapment efficiency, and skin permeability, of the TV formulations were experimentally investigated. The relationship among the formulation factor, the response variables, and the OTV was predicted using Design Expert® software. The accuracy and reliability of the OTV predicted using computer software were experimentally confirmed and investigated as an experimental transinvasome formulation (ETV). The results indicated that the skin permeability of the ETV was close to the OTV and was significantly higher than that of conventional liposomes and commercial products. The response surfaces estimated by the computer software were helpful in understanding the complicated relationship among the formulation factor, the response variables, and the stability of the TV formulation.

Collaboration


Dive into the Sureewan Duangjit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge