Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surendra K. Shukla is active.

Publication


Featured researches published by Surendra K. Shukla.


Cancer and Metabolism | 2014

Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

Surendra K. Shukla; Teklab Gebregiworgis; Vinee Purohit; Nina V. Chaika; Venugopal Gunda; Prakash Radhakrishnan; Kamiya Mehla; Iraklis I. Pipinos; Robert Powers; Fang Yu; Pankaj K. Singh

BackgroundAberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy.ResultsWe observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia.ConclusionsThus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.


Oncotarget | 2015

Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3

Shuping Yang; Lin Zhang; Vinee Purohit; Surendra K. Shukla; Xingcheng Chen; Fang Yu; Kai Fu; Yuanhong Chen; Joyce C. Solheim; Pankaj K. Singh; Wei Song; Jixin Dong

The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer.


Cancer Cell | 2017

MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer.

Surendra K. Shukla; Vinee Purohit; Kamiya Mehla; Venugopal Gunda; Nina V. Chaika; Enza Vernucci; Ryan J. King; Jaime Abrego; Gennifer Goode; Aneesha Dasgupta; Alysha L. Illies; Teklab Gebregiworgis; Bingbing Dai; Jithesh J. Augustine; Divya Murthy; Kuldeep S. Attri; Oksana Mashadova; Paul M. Grandgenett; Robert Powers; Quan P. Ly; Audrey J. Lazenby; Jean L. Grem; Fang Yu; José M. Matés; John M. Asara; Jung Whan Kim; Jordan Hankins; Colin D. Weekes; Michael A. Hollingsworth; Natalie J. Serkova

Poor response to cancer therapy due to resistance remains a clinical challenge. The present study establishes a widely prevalent mechanism of resistance to gemcitabine in pancreatic cancer, whereby increased glycolytic flux leads to glucose addiction in cancer cells and a corresponding increase in pyrimidine biosynthesis to enhance the intrinsic levels of deoxycytidine triphosphate (dCTP). Increased levels of dCTP diminish the effective levels of gemcitabine through molecular competition. We also demonstrate that MUC1-regulated stabilization of hypoxia inducible factor-1α (HIF-1α) mediates such metabolic reprogramming. Targeting HIF-1α or de novo pyrimidine biosynthesis, in combination with gemcitabine, strongly diminishes tumor burden. Finally, reduced expression of TKT and CTPS, which regulate flux into pyrimidine biosynthesis, correlates with better prognosis in pancreatic cancer patients on fluoropyrimidine analogs.


Orthopaedic Surgery | 2015

Role of Curcumin in Common Musculoskeletal Disorders: a Review of Current Laboratory, Translational, and Clinical Data

Krishi V Peddada; Kranti Peddada; Surendra K. Shukla; Anusha Mishra; Vivek Verma

The Indian spice turmeric, in which the active and dominant biomolecule is curcumin, has been demonstrated to have significant medicinal properties, including anti‐inflammatory and anti‐neoplastic effects. This promise is potentially very applicable to musculoskeletal disorders, which are common causes of physician visits worldwide. Research at the laboratory, translational and clinical levels that supports the use of curcumin for various musculoskeletal disorders, such as osteoarthritis, osteoporosis, musculocartilaginous disorders, and sarcoma is here in comprehensively summarized. Though more phase I−III trials are clearly needed, thus far the existing data show that curcumin can indeed potentially be useful in treatment of the hundreds of millions worldwide who are afflicted by these musculoskeletal disorders.


Biomacromolecules | 2016

EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer

Goutam Mondal; Virender Kumar; Surendra K. Shukla; Pankaj K. Singh; Ram I. Mahato

The objective of this study was to design GE11 peptide (YHWYGYTPQNVI) linked micelles of poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-gemcitabine-graft-dodecanol (PEG-b-PCC-g-GEM-g-DC) for enhanced stability and target specificity of gemcitabine (GEM) to EGFR-positive pancreatic cancer cells. GE11-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles showed EGFR-dependent enhanced cellular uptake, and cytotoxicity as compared to scrambled peptide HW12-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles and unmodified mPEG-b-PCC-g-GEM-g-DC micelles. Importantly, GE11-linked mixed micelles preferentially accumulated in orthotopic pancreatic tumor and tumor vasculature at 24 h post systemic administration. GE11-linked mixed micelles inhibited orthotopic pancreatic tumor growth compared to HW12-linked mixed micelles, unmodified mPEG-b-PCC-g-GEM-g-DC micelles, and free GEM formulations. Tumor growth inhibition was mediated by apoptosis of tumor cells and endothelial cells as determined by immunohistochemical staining. In summary, GE11-linked mixed micelles is a promising approach to treat EGFR overexpressing cancers.


Oncotarget | 2015

Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth

Surendra K. Shukla; Aneesha Dasgupta; Kamiya Mehla; Venugopal Gunda; Enza Vernucci; Joshua J. Souchek; Gennifer Goode; Ryan King; Anusha Mishra; Ibha Rai; Sangeetha Nagarajan; Nina V. Chaika; Fang Yu; Pankaj K. Singh

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models.


Cancer Letters | 2017

GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells

Jaime Abrego; Venugopal Gunda; Enza Vernucci; Surendra K. Shukla; Ryan J. King; Aneesha Dasgupta; Gennifer Goode; Divya Murthy; Fang Yu; Pankaj K. Singh

The increased rate of glycolysis and reduced oxidative metabolism are the principal biochemical phenotypes observed in pancreatic ductal adenocarcinoma (PDAC) that lead to the development of an acidic tumor microenvironment. The pH of most epithelial cell-derived tumors is reported to be lower than that of plasma. However, little is known regarding the physiology and metabolism of cancer cells enduring chronic acidosis. Here, we cultured PDAC cells in chronic acidosis (pH 6.9-7.0) and observed that cells cultured in low pH had reduced clonogenic capacity. However, our physiological and metabolomics analysis showed that cells in low pH deviate from glycolytic metabolism and rely more on oxidative metabolism. The increased expression of the transaminase enzyme GOT1 fuels oxidative metabolism of cells cultured in low pH by enhancing the non-canonical glutamine metabolic pathway. Survival in low pH is reduced upon depletion of GOT1 due to increased intracellular ROS levels. Thus, GOT1 plays an important role in energy metabolism and ROS balance in chronic acidosis stress. Our studies suggest that targeting anaplerotic glutamine metabolism may serve as an important therapeutic target in PDAC.


Cancer Research | 2017

De Novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer

Saber Tadros; Surendra K. Shukla; Ryan J. King; Venugopal Gunda; Enza Vernucci; Jaime Abrego; Nina V. Chaika; Fang Yu; Audrey J. Lazenby; Lyudmyla Berim; Jean L. Grem; Aaron R. Sasson; Pankaj K. Singh

Pancreatic adenocarcinoma is moderately responsive to gemcitabine-based chemotherapy, the most widely used single-agent therapy for pancreatic cancer. Although the prognosis in pancreatic cancer remains grim in part due to poor response to therapy, previous attempts at identifying and targeting the resistance mechanisms have not been very successful. By leveraging The Cancer Genome Atlas dataset, we identified lipid metabolism as the metabolic pathway that most significantly correlated with poor gemcitabine response in pancreatic cancer patients. Furthermore, we investigated the relationship between alterations in lipogenesis pathway and gemcitabine resistance by utilizing tissues from the genetically engineered mouse model and human pancreatic cancer patients. We observed a significant increase in fatty acid synthase (FASN) expression with increasing disease progression in spontaneous pancreatic cancer mouse model, and a correlation of high FASN expression with poor survival in patients and poor gemcitabine responsiveness in cell lines. We observed a synergistic effect of FASN inhibitors with gemcitabine in pancreatic cancer cells in culture and orthotopic implantation models. Combination of gemcitabine and the FASN inhibitor orlistat significantly diminished stemness, in part due to induction of endoplasmic reticulum (ER) stress that resulted in apoptosis. Moreover, direct induction of ER stress with thapsigargin caused a similar decrease in stemness and showed synergistic activity with gemcitabine. Our in vivo studies with orthotopic implantation models demonstrated a robust increase in gemcitabine responsiveness upon inhibition of fatty acid biosynthesis with orlistat. Altogether, we demonstrate that fatty acid biosynthesis pathway manipulation can help overcome the gemcitabine resistance in pancreatic cancer by regulating ER stress and stemness. Cancer Res; 77(20); 5503-17. ©2017 AACR.


Clinical Cancer Research | 2017

MUC1-Mediated Metabolic Alterations Regulate Response to Radiotherapy in Pancreatic Cancer

Venugopal Gunda; Joshua J. Souchek; Jaime Abrego; Surendra K. Shukla; Gennifer Goode; Enza Vernucci; Aneesha Dasgupta; Nina V. Chaika; Ryan J. King; Sicong Li; Shuo Wang; Fang Yu; Tadayoshi Bessho; Chi Lin; Pankaj K. Singh

Purpose: MUC1, an oncogene overexpressed in multiple solid tumors, including pancreatic cancer, reduces overall survival and imparts resistance to radiation and chemotherapies. We previously identified that MUC1 facilitates growth-promoting metabolic alterations in pancreatic cancer cells. The present study investigates the role of MUC1-mediated metabolism in radiation resistance of pancreatic cancer by utilizing cell lines and in vivo models. Experimental Design: We used MUC1-knockdown and -overexpressed cell line models for evaluating the role of MUC1-mediated metabolism in radiation resistance through in vitro cytotoxicity, clonogenicity, DNA damage response, and metabolomic evaluations. We also investigated whether inhibition of glycolysis could revert MUC1-mediated metabolic alterations and radiation resistance by using in vitro and in vivo models. Results: MUC1 expression diminished radiation-induced cytotoxicity and DNA damage in pancreatic cancer cells by enhancing glycolysis, pentose phosphate pathway, and nucleotide biosynthesis. Such metabolic reprogramming resulted in high nucleotide pools and radiation resistance in in vitro models. Pretreatment with the glycolysis inhibitor 3-bromopyruvate abrogated MUC1-mediated radiation resistance both in vitro and in vivo, by reducing glucose flux into nucleotide biosynthetic pathways and enhancing DNA damage, which could again be reversed by pretreatment with nucleoside pools. Conclusions: MUC1-mediated nucleotide metabolism plays a key role in facilitating radiation resistance in pancreatic cancer and targeted effectively through glycolytic inhibition. Clin Cancer Res; 23(19); 5881–91. ©2017 AACR.


Journal of Proteome Research | 2017

Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells

Teklab Gebregiworgis; Vinee Purohit; Surendra K. Shukla; Saber Tadros; Nina V. Chaika; Jaime Abrego; Scott E. Mulder; Venugopal Gunda; Pankaj K. Singh; Robert Powers

Pancreatic cancer cells overexpressing Mucin 1 (MUC1) rely on aerobic glycolysis and, correspondingly, are dependent on glucose for survival. Our NMR metabolomics comparative analysis of control (S2–013.Neo) and MUC1-overexpressing (S2–013.MUC1) cells demonstrates that MUC1 reprograms glutamine metabolism upon glucose limitation. The observed alteration in glutamine metabolism under glucose limitation was accompanied by a relative decrease in the proliferation of MUC1-overexpressing cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2–013.MUC1 cells fail to enter S phase and synthesize DNA because of a significant disruption in pyrimidine nucleotide biosynthesis. Our metabolomics analysis indicates that glutamine is the major source of oxaloacetate in S2–013.Neo and S2–013.MUC1 cells, where oxaloacetate is converted to aspartate, an important metabolite for pyrimidine nucleotide biosynthesis. However, glucose limitation impedes the flow of glutamine carbons into the pyrimidine nucleotide rings and instead leads to a significant accumulation of glutamine-derived aspartate in S2–013.MUC1 cells.

Collaboration


Dive into the Surendra K. Shukla's collaboration.

Top Co-Authors

Avatar

Pankaj K. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nina V. Chaika

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Venugopal Gunda

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fang Yu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Enza Vernucci

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Jaime Abrego

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Aneesha Dasgupta

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kamiya Mehla

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ryan J. King

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Gennifer Goode

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge