Sureshkumar Perumal Srinivasan
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sureshkumar Perumal Srinivasan.
Cell Death and Disease | 2015
Kesavan Meganathan; Smita Jagtap; Sureshkumar Perumal Srinivasan; Vilas Wagh; Jürgen Hescheler; Jan G. Hengstler; Marcel Leist; Agapios Sachinidis
Human embryonic stem cells (hESCs) may be applied to develop human-relevant sensitive in vitro test systems for monitoring developmental toxicants. The aim of this study was to identify potential developmental toxicity mechanisms of the histone deacetylase inhibitors (HDAC) valproic acid (VPA), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) relevant to the in vivo condition using a hESC model in combination with specific differentiation protocols and genome-wide gene expression and microRNA profiling. Analysis of the gene expression data showed that VPA repressed neural tube and dorsal forebrain (OTX2, ISL1, EMX2 and SOX10)-related transcripts. In addition, VPA upregulates axonogenesis and ventral forebrain-associated genes, such as SLIT1, SEMA3A, DLX2/4 and GAD2. HDACi-induced expression of miR-378 and knockdown of miR-378 increases the expression of OTX2 and EMX2, which supports our hypothesis that HDACi targets forebrain markers through miR-378. In conclusion, multilineage differentiation in vitro test system is very sensitive for monitoring molecular activities relevant to in vivo neuronal developmental toxicity. Moreover, miR-378 seems to repress the expression of the OTX2 and EMX2 and therefore could be a regulator of the development of neural tube and dorsal forebrain neurons.
The Journal of Thoracic and Cardiovascular Surgery | 2012
Klaus Neef; Yeong-Hoon Choi; Sureshkumar Perumal Srinivasan; Philipp Treskes; Douglas B. Cowan; Christof Stamm; Martin Rubach; Roland Adelmann; Thorsten Wittwer; Thorsten Wahlers
OBJECTIVE The effect of mechanical preconditioning on skeletal myoblasts in engineered tissue constructs was investigated to resolve issues associated with conduction block between skeletal myoblast cells and cardiomyocytes. METHODS Murine skeletal myoblasts were used to generate engineered tissue constructs with or without application of mechanical strain. After in vitro myotube formation, engineered tissue constructs were co-cultured for 6 days with viable embryonic heart slices. With the use of sharp electrodes, electrical coupling between engineered tissue constructs and embryonic heart slices was assessed in the presence or absence of pharmacologic agents. RESULTS The isolation and expansion procedure for skeletal myoblasts resulted in high yields of homogeneously desmin-positive (97.1% ± 0.1%) cells. Mechanical strain was exerted on myotubes within engineered tissue constructs during gelation of the matrix, generating preconditioned engineered tissue constructs. Electrical coupling between preconditioned engineered tissue constructs and embryonic heart slices was observed; however, no coupling was apparent when engineered tissue constructs were not subjected to mechanical strain. Coupling of cells from engineered tissue constructs to cells in embryonic heart slices showed slower conduction velocities than myocardial cells with the embryonic heart slices (preconditioned engineered tissue constructs vs embryonic heart slices: 0.04 ± 0.02 ms vs 0.10 ± 0.05 ms, P = .011), lower maximum stimulation frequencies (preconditioned engineered tissue constructs vs embryonic heart slices: 4.82 ± 1.42 Hz vs 10.58 ± 1.56 Hz; P = .0009), and higher sensitivities to the gap junction inhibitor (preconditioned engineered tissue constructs vs embryonic heart slices: 0.22 ± 0.07 mmol/L vs 0.93 ± 0.15 mmol/L; P = .0004). CONCLUSIONS We have generated skeletal myoblast-based transplantable grafts that electrically couple to myocardium.
Biochemical and Biophysical Research Communications | 2012
Sureshkumar Perumal Srinivasan; Klaus Neef; Philipp Treskes; Oj Liakopoulos; Christof Stamm; Douglas B. Cowan; Navid Madershahian; Elmar W. Kuhn; Ingo Slottosch; Thorsten Wittwer; Thorsten Wahlers; Yeong-Hoon Choi
Transplantation of skeletal myoblasts (SMs) has been investigated as a potential cardiac cell therapy approach. SM are available autologously, predetermined for muscular differentiation and resistant to ischemia. Major hurdles for their clinical application are limitations in purity and yield during cell isolation as well as the absence of gap junction expression after differentiation into myotubes. Furthermore, transplanted SMs do not functionally or electrically integrate with the host myocardium. Here, we describe an efficient method for isolating homogeneous SM populations from neonatal mice and demonstrate persistent gap junction expression in an engineered tissue. This method resulted in a yield of 1.4 × 10(8) high-purity SMs (>99% desmin positive) after 10 days in culture from 162.12 ± 11.85 mg muscle tissue. Serum starvation conditions efficiently induced differentiation into spontaneously contracting myotubes that coincided with loss of gap junction expression. For mechanical conditioning, cells were integrated into engineered tissue constructs. SMs within tissue constructs exhibited long term survival, ordered alignment, and a preserved ability to differentiate into contractile myotubes. When the tissue constructs were subjected to passive longitudinal tensile stress, the expression of gap junction and cell adherence proteins was maintained or increased throughout differentiation. Our studies demonstrate that mechanical loading of SMs may provide for improved electromechanical integration within the myocardium, which could lead to more therapeutic opportunities.
Journal of Cardiovascular Pharmacology and Therapeutics | 2015
Sven Baumgartner; Marcel Halbach; Benjamin Krausgrill; Martina Maass; Sureshkumar Perumal Srinivasan; Raja Ghazanfar Ali Sahito; Gabriel Peinkofer; Filomain Nguemo; Jochen Müller-Ehmsen; Jürgen Hescheler
The aim of this study was to investigate whether continuous electrical stimulation affects electrophysiological properties and cell morphology of fetal cardiomyocytes (FCMs) in culture. Fetal cardiomyocytes at day 14.5 post coitum were harvested from murine hearts and electrically stimulated for 6 days in culture using a custom-made stimulation chamber. Subsequently, action potentials of FCM were recorded with glass microelectrodes. Immunostainings of α-Actinin, connexin 43, and vinculin were performed. Expression of ion channel subunits Kcnd2, Slc8a1, Cacna1, Kcnh2, and Kcnb1 was analyzed by quantitative reverse-transcriptase polymerase chain reaction. Action potential duration to 50% and 90% repolarization (APD50 and APD90) of electrically stimulated FCMs were significantly decreased when compared to nonstimulated control FCM. Alignment of cells was significantly higher in stimulated FCM when compared to control FCM. The expression of connexin 43 was significantly increased in stimulated FCM when compared to control FCM. The ratio between cell length and cell width of the stimulated FCM was significantly higher than in control FCM. Kcnh2 and Kcnd2 were upregulated in stimulated FCM when compared to control FCM. Expression of Slc8a1, Cacna1c, and Kcnb1 was not different in stimulated and control FCMs. The decrease in APD50 observed after electrical stimulation of FCM in vitro corresponds to the electrophysiological maturation of FCM in vivo. Expression levels of ion channels suggest that some important but not all aspects of the complex process of electrophysiological maturation are promoted by electrical stimulation. Parallel alignment, increased connexin 43 expression, and elongation of FCM are signs of a morphological maturation induced by electrical stimulation.
Cellular Physiology and Biochemistry | 2015
Ruodan Xu; Sureshkumar Perumal Srinivasan; Poornima Sureshkumar; Erastus Nembu Nembo; Christoph Schäfer; Judith Semmler; Matthias Matzkies; Morten Albrechtsen; Jürgen Hescheler; Filomain Nguemo
Background/Aims: Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. Methods: In the present study, using a transgenic murine embryonic stem (ES) cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of α-myosin heavy chain (α-MHC) promoter (pαMHC-EGFP), we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGLL, hNgf_C2, EnkaminE, Plannexin and C3) on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. Results: The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF) peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Conclusion: Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to cardiac pathologies where BDNF levels are impaired.
Expert Opinion on Therapeutic Patents | 2015
Poornima Sureshkumar; Sureshkumar Perumal Srinivasan; Karthick Natarajan; John Antonydas Gaspar; Jürgen Hescheler; Agapios Sachinidis
Introduction: Innovations in human pluripotent stem cell research and their application in therapeutics have seen a giant leap in the past decade. Patent applications related to human pluripotent stem cell generation, culture and differentiation show an ever-increasing trend worldwide with hundreds of patents being applied for every year. With the turn of the second decade in stem cell patenting, a review of the latest patents issued will be significant. Areas covered: The growing need in healthcare sector has revolutionized stem cell application in clinical therapeutics by extending in unprecedented dimensions. With the potential of being able to differentiate into any desired adult cell lineage, human pluripotent stem cells find a wide range of applicability in clinical as well as cosmetic therapy. Moreover, the recent innovation of isolating a disease-specific pluripotent stem cell has opened new horizons to stem cell application in cell therapy. This review gives an overview of significant international patents granted on innovations in human pluripotent stem cell differentiation methodologies between 2009 and 2014. Expert opinion: The discovery of human pluripotent stem cells and their immense potential in clinical therapeutics has increasingly channeled scientific research in their orientation. Although being widely used to fathom human physiology, the trend in stem cell application is slowly shifting toward disease-modeling, drug safety evaluation and toxicity-testing. And in order to probe those unexplored realms of stem cell applications, a unified approach from the scientific community is imperative.
Molecular therapy. Methods & clinical development | 2017
Davood Sabour; Sureshkumar Perumal Srinivasan; Susan Rohani; Vilas Wagh; John Antonydas Gaspar; Darius Panek; Mostafa A. Ardestani; Michael Xavier Doss; Nicole Riet; Hinrich Abken; Jürgen Hescheler; Symeon Papadopoulos; Agapios Sachinidis
The role of striatin interacting protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2-silenced murine (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild-type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for the KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that differentiation of KD ESCs is repressed. This occurs even in 16-day-old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes, Hat1 and Dnmt3, enzymatic activities of the histone acetyltransferase type B (Hat1) and DNA (cytosine-5)-methyltransferase 3 beta (Dnmt3b) were higher in differentiated 16-day-old KD EBs than in SCR or WT EBs. The expression levels of let-7, 290, and 302 microRNA families were opposed in KD ESCs, while KD EBs had levels comparable to WT and SCR ESCs during differentiation. Strip2 is critical for the regular differentiation of ESCs. Moreover, Strip2 deficient ESCs showed a dysregulation of epigenetic regulators and microRNAs regulating pluripotency.
Current Medicinal Chemistry | 2016
Raja Ghazanfar Ali Sahito; Poornima Sureshkumar; Isaia Sotiriadou; Sureshkumar Perumal Srinivasan; Davood Sabour; Jürgen Hescheler; Kurt Pfannkuche; Agapios Sachinidis
Biomaterials play a vital role in the field of regenerative medicine and tissue engineering. To date, a large number of biomaterials have been used in cardiovascular research and application. Recently, biomaterials have held a lot of promise in cardiac stem cell therapy. They are used in cardiac tissue engineering to form scaffolds for cellular transplantation, promote angiogenesis, enhance transplanted cell engraftment or influence cell migration. The science of biomaterial designing has evolved to an extent where they can be designed to mimic the microenvironment of a cardiac tissue in vivo and contribute in deciding the fate of transplanted stem cells and induce cardiac lineage oriented stem cell differentiation. In this review, we focus on biomaterials used in cardiovascular stem cell research, tissue engineering and regenerative medicine and conclude with an outlook on future impacts of biomaterial in medical sciences.
Pharmacological Research | 2017
Judith Semmler; Jan Kormann; Sureshkumar Perumal Srinivasan; Annette Köster; Daniel Sälzer; Michael Reppel; Jürgen Hescheler; Markus Plomann; Filomain Nguemo
&NA; The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5 days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T‐box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi‐Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV‐conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (If), as well as L‐type Ca2+ channel (ICaL), and sodium channel (INa). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases. Graphical abstract Figure. No caption available.
Stem Cells International | 2015
Klaus Neef; Philipp Treskes; Guoxing Xu; Florian Drey; Sureshkumar Perumal Srinivasan; Tomo Saric; Erastus Nembu Nembo; Judith Semmler; Filomain Nguemo; Christof Stamm; Douglas B. Cowan; Antje-Christin Deppe; Maximilian Scherner; Thorsten Wittwer; Jürgen Hescheler; Thorsten Wahlers; Yeong-Hoon Choi
Ischemic heart disease is the main cause of death in western countries and its burden is increasing worldwide. It typically involves irreversible degeneration and loss of myocardial tissue leading to poor prognosis and fatal outcome. Autologous cells with the potential to regenerate damaged heart tissue would be an ideal source for cell therapeutic approaches. Here, we compared different methods of conditional culture for increasing the yield and cardiogenic potential of murine skeletal muscle-derived stem cells. A subpopulation of nonadherent cells was isolated from skeletal muscle by preplating and applying cell culture conditions differing in support of cluster formation. In contrast to static culture conditions, dynamic culture with or without previous hanging drop preculture led to significantly increased cluster diameters and the expression of cardiac specific markers on the protein and mRNA level. Whole-cell patch-clamp studies revealed similarities to pacemaker action potentials and responsiveness to cardiac specific pharmacological stimuli. This data indicates that skeletal muscle-derived stem cells are capable of adopting enhanced cardiac muscle cell-like properties by applying specific culture conditions. Choosing this route for the establishment of a sustainable, autologous source of cells for cardiac therapies holds the potential of being clinically more acceptable than transgenic manipulation of cells.