Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surinder Chopra is active.

Publication


Featured researches published by Surinder Chopra.


The Plant Cell | 2000

A Segmental Gene Duplication Generated Differentially Expressed myb-Homologous Genes in Maize

Peifen Zhang; Surinder Chopra; Thomas Peterson

The myb-homologous p1 gene regulates the synthesis of flavonoid pigments in maize kernel pericarp and cob; these floral organs are greatly modified in size and shape compared with their counterparts in teosinte, the progenitor of maize. To elucidate the molecular evolution of the p1 gene in relation to its expression and possible functions in maize and teosinte, we have isolated a second maize gene (p2) that is highly homologous with the p1 gene, and a related gene (p2-t) from Zea mays subsp parviglumis. We present evidence that the maize p1 and p2 genes were generated by duplication of an ancestral p gene (ppre) and its downstream sequences; the duplicated 3′ flanking sequences were inserted upstream of the ppre gene, thereby changing its transcription pattern. This model accounts for the structural organization and the observed differential expression of the p1 and p2 genes: p1 transcripts accumulate in kernel pericarp, cob, tassel glumes, and silk, whereas p2 transcripts are found in developing anther and silk. The duplication is estimated to have occurred 2.75 million years ago; subsequently, multiple retroelements have been inserted between the p1 and p2 genes. Our results demonstrate the evolution of a single gene into a compound locus containing two component genes with different tissue specificities. Expression of the p1 gene in the kernel pericarp may have provided a selective advantage during the evolution of maize kernel morphology.


Molecular Genetics and Genomics | 1998

A maize Myb homolog is encoded by a multicopy gene complex

Surinder Chopra; Athma P; Xianggan Li; Thomas Peterson

Abstract The maize P gene encodes a Myb-homologous transcriptional regulator of flavonoid pigmentation in floral organs, and different P gene alleles condition precise tissue- and organ-specific pigmentation patterns. To determine the molecular basis for allele-specific expression patterns, we have isolated and compared two natural alleles of the P gene which differ in expression, structure and copy number. The P-rr allele is associated with pigmentation of most floral tissues and contains a single copy of the P gene. In contrast, the P-wr allele restricts pigmentation to a subset of floral tissues, and is composed of six gene copies arranged in a tandem head-to-tail array. Each of the six repeats contains a single P gene, including regulatory and coding sequences. Despite the six-fold tandem repetition of P-wr gene copies, P-wr mRNA levels in kernel pericarp are much reduced compared to mRNA levels from the single-copy P-rr gene. Moreover, the P-wr multicopy complex is hypermethylated relative to P-rr. Thus, maize P gene alleles may represent a natural system for studying the effects of methylation and gene copy number on tissue-specific gene expression. We discuss the possibility that somatic pairing of repeated gene copies may be involved in regulating gene expression.


Genetics | 2010

Flavonoid Phytoalexin-Dependent Resistance to Anthracnose Leaf Blight Requires a Functional yellow seed1 in Sorghum bicolor

Farag Ibraheem; Iffa Gaffoor; Surinder Chopra

In Sorghum bicolor, a group of phytoalexins are induced at the site of infection by Colletotrichum sublineolum, the anthracnose fungus. These compounds, classified as 3-deoxyanthocyanidins, have structural similarities to the precursors of phlobaphenes. Sorghum yellow seed1 (y1) encodes a MYB transcription factor that regulates phlobaphene biosynthesis. Using the candystripe1 transposon mutagenesis system in sorghum, we have isolated functional revertants as well as loss-of-function alleles of y1. These near-isogenic lines of sorghum show that, compared to functionally revertant alleles, loss of y1 lines do not accumulate phlobaphenes. Molecular characterization of two null y1 alleles shows a partial internal deletion in the y1 sequence. These null alleles, designated as y1-ww1 and y1-ww4, do not accumulate 3-deoxyanthocyanidins when challenged with the nonpathogenic fungus Cochliobolus heterostrophus. Further, as compared to the wild-type allele, both y1-ww1 and y1-ww4 show greater susceptibility to the pathogenic fungus C. sublineolum. In fungal-inoculated wild-type seedlings, y1 and its target flavonoid structural genes are coordinately expressed. However, in y1-ww1 and y1-ww4 seedlings where y1 is not expressed, steady-state transcripts of its target genes could not be detected. Cosegregation analysis showed that the functional y1 gene is genetically linked with resistance to C. sublineolum. Overall results demonstrate that the accumulation of sorghum 3-deoxyanthocyanidin phytoalexins and resistance to C. sublineolum in sorghum require a functional y1 gene.


Genetics | 2008

Progressive Loss of DNA Methylation Releases Epigenetic Gene Silencing From a Tandemly Repeated Maize Myb Gene

Rajandeep S. Sekhon; Surinder Chopra

Maize pericarp color1 (p1) gene, which regulates phlobaphene biosynthesis in kernel pericarp and cob glumes, offers an excellent genetic system to study tissue-specific gene regulation. A multicopy p1 allele, P1-wr (white pericarp/red cob) is epigenetically regulated. Hypomethylation of P1-wr in the presence of Unstable factor for orange1 (Ufo1), leads to ectopic pigmentation of pericarp and other organs. The Ufo1-induced phenotypes show incomplete penetrance and poor expressivity: gain of pigmentation is observed only in a subset of plants carrying Ufo1 mutation, and the extent of pigmentation is highly variable. We show that Ufo1 induces progressive hypomethylation of P1-wr repeats over generations. After five generations of exposure to Ufo1, a 30–40% decrease in CG and CNG methylation was observed in an upstream enhancer and an intron region of P1-wr. Interestingly, such hypomethylation correlated with an increase in penetrance of the Ufo1-induced pigmentation phenotype from ∼27 to 61%. Expressivity of the Ufo1-induced phenotype also improved markedly as indicated by increased uniformity of pericarp pigmentation in the later generations. Furthermore, the poor expressivity of the Uo1 is associated with mosaic methylation patterns of the P1-wr upstream enhancer in individual cells and distinct P1-wr gene copies. Finally, comparison of methylation among different tissues indicated that Ufo1 induces rapid CG and CNG hypomethylation of P1-wr repeats during plant development. Together, these data indicate that the poor penetrance and expressivity of Ufo1-induced phenotypes is caused by mosaicism of methylation, and progressive mitotic hypomethylation leads to improved meiotic heritability of the mutant phenotype. In duplicated genomes like maize, loss of an epigenetic regulator may produce mosaic patterns due to redundancy of epigenetic regulators and their target sequences. We show here that multiple developmental cycles may be required for complete disruption of suppressed epigenetic states and appearance of heritable phenotypes.


Genetics | 2011

Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize

Mandeep Sharma; Moisés Cortés-Cruz; Kevin R. Ahern; Michael D. McMullen; Thomas P. Brutnell; Surinder Chopra

In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize.


Genetics | 2010

Tissue Culture-induced Novel Epialleles of a Myb Transcription Factor Encoded by pericarp color1 in Maize

Yong Rhee; Rajandeep S. Sekhon; Surinder Chopra; Shawn M. Kaeppler

Plants regenerated from tissue culture often display somaclonal variation, that is, somatic and often meiotically heritable phenotypic variation that can result from both genetic and epigenetic modifications. To better understand the molecular basis of somaclonal variation, we have characterized four unique tissue culture-derived epialleles of the pericarp color1 (p1) gene of maize (Zea mays L.). The progenitor p1 allele, P1-wr, is composed of multiple head-to-tail tandemly arranged copies of the complete gene unit and specifies brick-red phlobaphene pigmentation in the cob glumes. The novel epialleles identified in progeny plants regenerated from tissue culture showed partial to complete loss of p1 function indicated by pink or colorless cob glumes. Loss of pigmentation was correlated with nearly complete loss of p1 steady-state transcripts. DNA gel-blot analysis and genomic bisulfite sequencing showed that silencing of the epialleles was associated with hypermethylation of a region in the second intron of P1-wr. Presence of Unstable factor for orange1 (Ufo1), an unlinked epigenetic modifier of p1, restored the cob glume pigmentation in the silenced alleles, and such reactivation was accompanied by hypomethylation of the p1 sequence. This observation confirmed that silencing of the epialleles is indeed due to epigenetic modifications and that the p1 epialleles were capable of functioning in the presence of the correct trans-acting factors. While the low-copy regions of the genome generally undergo hypomethylation during tissue culture, our study shows that the tandemly repeated genes are also prone to hypermethylation and epigenetic silencing.


Archive | 2006

Flavonoid Pigments as Tools in Molecular Genetics

Surinder Chopra; Atsushi Hoshino; Jayanand Boddu; Shigeru Iida

SURINDER CHOPRA, ATSUSHI HOSHINO, JAYANAND BODDU, AND SHIGERU IIDA Department of Crop & Soil Sciences, The Pennsylvania State University, University Park, PA 16802 USA Tel: 814-865-1159; Fax: 814-863-7043; E-mail: [email protected]; National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan, Tel: +81-564-55-7680; Fax: +81-564-55-7685; E-mail: [email protected]


Genetics | 2006

Epigenetic Modifications of Distinct Sequences of the p1 Regulatory Gene Specify Tissue-Specific Expression Patterns in Maize

Rajandeep S. Sekhon; Thomas Peterson; Surinder Chopra

Tandemly repeated endogenous genes are common in plants, but their transcriptional regulation is not well characterized. In maize, the P1-wr allele of pericarp color1 is composed of multiple copies arranged in a head-to-tail fashion. P1-wr confers a white kernel pericarp and red cob glume pigment phenotype that is stably inherited over generations. To understand the molecular mechanisms that regulate tissue-specific expression of P1-wr, we have characterized P1-wr*, a spontaneous loss-of-function epimutation that shows a white kernel pericarp and white cob glume phenotype. As compared to its progenitor P1-wr, the P1-wr* is hypermethylated in exon 1 and intron 2 regions. In the presence of the epigenetic modifier Ufo1 (Unstable factor for orange1), P1-wr* plants exhibit a range of cob glume pigmentation whereas pericarps remain colorless. In these plants, the level of cob pigmentation directly correlates with the degree of DNA demethylation in the intron 2 region of p1. Further, genomic bisulfite sequencing indicates that a 168-bp region of intron 2 is significantly hypomethylated in both CG and CNG context in P1-wr* Ufo1 plants. Interestingly, P1-wr* Ufo1 plants did not show any methylation change in a distal enhancer region that has previously been implicated in Ufo1-induced gain of pericarp pigmentation of the P1-wr allele. These results suggest that distinct regulatory sequences in the P1-wr promoter and intron 2 regions can undergo independent epigenetic modifications to generate tissue-specific expression patterns.


Genetics | 2008

A Mutator transposon insertion is associated with ectopic expression of a tandemly repeated multicopy Myb gene pericarp color1 of maize.

Michael L. Robbins; Rajandeep S. Sekhon; Robert B. Meeley; Surinder Chopra

The molecular basis of tissue-specific pigmentation of maize carrying a tandemly repeated multicopy allele of pericarp color1 (p1) was examined using Mutator (Mu) transposon-mediated mutagenesis. The P1-wr allele conditions a white or colorless pericarp and a red cob glumes phenotype. However, a Mu-insertion allele, designated as P1-wr-mum6, displayed an altered phenotype that was first noted as occasional red stripes on pericarp tissue. This gain-of-pericarp-pigmentation phenotype was heritable, yielding families that displayed variable penetrance and expressivity. In one fully penetrant family, deep red pericarp pigmentation was observed. Several reports on Mu suppressible alleles have shown that Mu transposons can affect gene expression by mechanisms that depend on transposase activity. Conversely, the P1-wr-mum6 phenotype is not affected by transposase activity. The increased pigmentation was associated with elevated mRNA expression of P1-wr-mum6 copy (or copies) that was uninterrupted by the transposons. Genomic bisulfite sequencing analysis showed that the elevated expression was associated with hypomethylation of a floral-specific enhancer that is ∼4.7 kb upstream of the Mu1 insertion site and may be proximal to an adjacent repeated copy. We propose that the Mu1 insertion interferes with the DNA methylation and related chromatin packaging of P1-wr, thereby inducing expression from gene copy (or copies) that is otherwise suppressed.


Journal of Proteomics | 2013

Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.

Michael L. Robbins; Ansuman Roy; Po-Hao Wang; Iffa Gaffoor; Rajandeep S. Sekhon; Marcia M. de O. Buanafina; Jai S. Rohila; Surinder Chopra

UNLABELLED The maize pericarp color1 (p1) gene encodes a Myb transcription factor that regulates the accumulation of 3-deoxyflavonoid pigments called phlobaphenes. The Unstable factor for orange1 (Ufo1) is a dominant epigenetic modifier of the p1 that results in ectopic pigmentation in pericarp. Presence of Ufo1-1 correlates with pleiotropic growth and developmental defects. To investigate the Ufo1-1-induced changes in the proteome, we conducted comparative proteomics analysis of P1-wr; Ufo1-1 pericarps using the 2-D DIGE and iTRAQ techniques. Most of the identified proteins were found to be involved in glycolysis, protein synthesis and modification, flavonoid and lignin biosynthesis and defense responses. Further, immunoblot analysis of internode protein extracts demonstrated that caffeoyl CoA O-methyltransferase (COMT) is post-transcriptionally down regulated in P1-wr; Ufo1-1 plants. Consistent with the down regulation of COMT, the concentrations of p-coumaric acid, syringaldehydes, and lignin are reduced in P1-wr; Ufo1-1 internodes. The reductions in these phenylpropanoids correlate with the bent stalk and stunted growth of P1-wr; Ufo1-1 plants. Finally, over-expression of the p1 in transgenic plants is also correlated with a lodging phenotype and reduced COMT expression. We conclude that ectopic expression of p1 can result in developmental defects that are correlated with altered regulation and synthesis of phenylpropanoid compounds including lignin. BIOLOGICAL SIGNIFICANCE Transcription factors have specific expression patterns that ensure that the biochemical pathways under their control are active in relevant tissues. Plant breeders can select for alleles of transcription factors that produce desirable expression patterns to improve a plants growth, development, and defense against insects and pathogens. The resulting de novo accumulation of metabolites in plant tissues in significant quantities could have beneficial and/or detrimental consequences. To understand this problem we investigated how the aberrant expression of a classically-studied transcription factor pericarp color1 (p1) which regulates phenylpropanoid metabolism, affects the maize proteome in pericarp tissue. We utilized a dominant mutant Unstable factor for orange 1-1 (Ufo1-1) which reduces the epigenetic suppression of p1 in various tissues throughout the maize plant. Our proteomic analysis shows how, in the presence of Ufo1-1, key enzymes of the glycolytic and shikimic acid pathways were modulated to produce substrates required for flavonoid synthesis. The finding that the presence of Ufo1-1 affected the expression levels of various enzymes in the lignin pathway was of particular interest. We show that lignin was reduced in Ufo1-1 plants expressing p1 and was associated with the post-transcriptional down regulation of CoA O-methyltransferase (COMT) enzyme. We further correlated the down-regulation of COMT with plant bending phenotype in Ufo1-1 plants expressing p1 and to a stalk lodging phenotype of transgenic p1 plants. This study demonstrates that although there can be adverse consequences to aberrantly overexpressing transcription factors, there might also be benefits such as being able to reduce lignin content for biofuel crops. However, more research will be required to understand the genetic and epigenetic regulation of transcription factors and how their expression can be optimized to obtain desired traits in preferred tissue types. This article is part of a Special Issue entitled: Translational Plant Proteomics.

Collaboration


Dive into the Surinder Chopra's collaboration.

Top Co-Authors

Avatar

Thomas Peterson

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rajandeep S. Sekhon

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jayanand Boddu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Catherine Svabek

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A. J. Gevens

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Iffa Gaffoor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Po-Hao Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge