Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan A. Marsh is active.

Publication


Featured researches published by Susan A. Marsh.


Medicine and Science in Sports and Exercise | 2011

Antioxidant Supplementation Reduces Skeletal Muscle Mitochondrial Biogenesis

Natalie Strobel; Jonathan M. Peake; Aya Matsumoto; Susan A. Marsh; Jeff S. Coombes; Glenn D. Wadley

PURPOSE Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and α-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. METHODS Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d · wk at ∼ 70%VO2max for up to 90 min · d for 14 wk. RESULTS Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1α mRNA, PGC-1α and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. CONCLUSIONS Vitamin E and α-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.


International Journal of Cardiology | 2011

Oxidative stress biomarkers as predictors of cardiovascular disease

Natalie Strobel; Robert G. Fassett; Susan A. Marsh; Jeff S. Coombes

Evidence for the role of oxidative stress in the pathogenesis of cardiovascular disease (CVD) is primarily based on experimental and observational human studies. The aim of this review is to examine the observational longitudinal studies that have investigated the relationship between oxidative stress biomarkers and CVD. Fifty-one studies were identified with twenty-six of these measuring oxidized (Ox)-LDL, fifteen assessing myeloperoxidase, seven using lipid peroxidation measures and three quantifying protein oxidation. Results of studies using Ox-LDL have been equivocal with sixteen of the twenty-six studies reporting that this measure is predictive of cardiovascular events. These inconsistent results are not explained by differences in the study populations (primary or secondary CVD) or the type of assay used (auto or monoclonal antibodies). Six of the seven lipid peroxidation, and two of three protein oxidation studies found associations. Twelve of fifteen studies assessing the role of myeloperoxidase reported it to be predictive of CVD. However, issues surrounding the specificity of myeloperoxidase as a marker of oxidative stress and the small number of research groups reporting these results, limit this finding. In summary, the ability of oxidative stress biomarkers to predict CVD has yet to be established. Furthermore, it is important to note that the methods used to assess oxidative stress in these studies are indirect, and the evidence that the various methods actually reflect oxidative stress in vivo is limited.


Life Sciences | 2013

Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart

Susan A. Marsh; Pamela C. Powell; Louis J. Dell'Italia; John C. Chatham

AIMS Increased O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins has been implicated in the adverse effects of diabetes on the heart, although this has typically been based on models of severe hyperglycemia. Diabetes has also been associated with dysregulation of autophagy, a critical cell survival process; however, little is known regarding autophagy in the diabetic heart or whether this is influenced by O-GlcNAcylation or hemodynamic stress. MAIN METHODS Young male rats were assigned to control (12% kcal fat/19% protein/69% carbohydrate), high fat diet (60/19/21%) and type 2 diabetic (high fat diet+low dose streptozotocin) groups for 8 weeks, followed by sham or pressure overload surgeries; animals were sacrificed 8 weeks after surgery. KEY FINDINGS A modest increase in arterial pressure resulted in no significant effects on cardiac function in control or high fat groups, while diabetic hearts exhibited contractile dysfunction and increased apoptosis and scar formation. Immunoprecipitation studies revealed, for the first time, that Beclin-1, which plays a critical early role in autophagy, and the anti-apoptotic Bcl-2, are targets for O-GlcNAcylation. Interestingly, we also found that cardiomyocytes isolated from type 2 diabetic db/db mice exhibited a blunted autophagic response and this was at least partially reversed by inhibiting glucose entry into the hexosamine biosynthesis pathway, which regulates O-GlcNAc synthesis. We also found that acutely augmenting O-GlcNAc levels in non-diabetic cardiomyocytes mimicked the effects of diabetes by blunting autophagic signaling. SIGNIFICANCE These data suggest that O-GlcNAc-mediated inhibition of autophagy may contribute to the abnormal response of diabetic hearts to hemodynamic stress.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Interaction of diet and diabetes on cardiovascular function in rats

Susan A. Marsh; Louis J. Dell’Italia; John C. Chatham

Genetic rodent models of type 2 diabetes are routinely utilized in studies of diabetes-related cardiovascular disease; however, these models frequently exhibit abnormalities that are not consistent with diabetic complications. The aim of this study was to develop a model of type 2 diabetes that exhibits evidence of cardiovascular dysfunction commonly seen in patients with diabetes with minimal nondiabetes-related pathologies. Young male rats received either control (Con), high-fat (HF; 60%), or Western (Wes; 40% fat, 45% carbohydrate) diets for 2 wk after which streptozotocin (2 x 35 mg/kg ip 24 h apart) was administered to induce diabetes (Dia). Blood glucose levels were higher in Con + Dia and Wes + Dia groups compared with the HF + Dia group (25 +/- 1, 25 +/- 2, and 15 +/- 1 mmol/l, respectively; P < 0.05) group. Liver, kidney, and pancreatic dysfunction and cardiomyocyte lipid accumulation were found in all diabetic animals. Despite lower heart rates in Con + Dia and HF + Dia groups, arterial and left ventricular pressures were not different between any of the experimental groups. All three diabetic groups had diastolic dysfunction, but only HF + Dia and Wes + Dia groups exhibited elevated diastolic wall stress, arterial stiffness (augmentation index), and systolic dysfunction (velocity of circumferential shortening, systolic wall stress). Surprisingly, we found that left ventricular dysfunction and arterial stiffness were more pronounced in the HF + Dia than the Con + Dia group and was similar to the Wes + Dia group despite significantly lower levels of hyperglycemia compared with either group. In conclusion, the HF + Dia group exhibited a stable, modest level of hyperglycemia, which was associated with cardiac dysfunction comparable with that seen in moderate to advanced stages of human type 2 diabetes.


Journal of Biological Chemistry | 2012

Modification of STIM1 by O-linked N-Acetylglucosamine (O-GlcNAc) Attenuates Store-operated Calcium Entry in Neonatal Cardiomyocytes

Xiaoyuan Zhu-Mauldin; Susan A. Marsh; Luyun Zou; Richard B. Marchase; John C. Chatham

Background: Increased cellular O-GlcNAc levels decrease store-operated Ca2+ entry (SOCE), however, the mechanism is not understood. STIM1 regulates SOCE, but effect of O-GlcNAc on STIM1 function is not known. Results: Increased cardiomyocyte O-GlcNAcylation attenuated STIM1 puncta formation, SOCE and increased O-GlcNAc modification of STIM1. Conclusion: O-GlcNAc modification of STIM1 plays a key role in regulating SOCE. Significance: Protein O-GlcNAcylation regulates SOCE, a central Ca2+ signaling pathway. Store-operated calcium entry (SOCE) is a major Ca2+ signaling pathway responsible for regulating numerous transcriptional events. In cardiomyocytes SOCE has been shown to play an important role in regulating hypertrophic signaling pathways, including nuclear translocation of NFAT. Acute activation of pathways leading to O-GlcNAc synthesis have been shown to impair SOCE-mediated transcription and in diabetes, where O-GlcNAc levels are chronically elevated, cardiac hypertrophic signaling is also impaired. Therefore the goal of this study was to determine whether changes in cardiomyocyte O-GlcNAc levels impaired the function of STIM1, a widely recognized mediator of SOCE. We demonstrated that acute activation of SOCE in neonatal cardiomyocytes resulted in STIM1 puncta formation, which was inhibited in a dose-dependent manner by increasing O-GlcNAc synthesis with glucosamine or inhibiting O-GlcNAcase with thiamet-G. Glucosamine and thiamet-G also inhibited SOCE and were associated with increased O-GlcNAc modification of STIM1. These results suggest that activation of cardiomyocyte O-GlcNAcylation attenuates SOCE via STIM1 O-GlcNAcylation and that this may represent a new mechanism by which increased O-GlcNAc levels regulate Ca2+-mediated events in cardiomyocytes. Further, since SOCE is a fundamental mechanism underlying Ca2+ signaling in most cells and tissues, it is possible that STIM1 represents a nexus linking protein O-GlcNAcylation with Ca2+-mediated transcription.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner

Boglárka Laczy; Susan A. Marsh; Charlye A Brocks; István Wittmann; John C. Chatham

Acute increases in O-linked β-N-acetylglucosamine (O-GlcNAc) levels of cardiac proteins exert protective effects against ischemia-reperfusion (I/R) injury. One strategy to rapidly increase cellular O-GlcNAc levels is inhibition of O-GlcNAcase (OGA), which catalyzes O-GlcNAc removal. Here we tested the cardioprotective efficacy of two novel and highly selective OGA inhibitors, the NAG-thiazoline derivatives NAG-Bt and NAG-Ae. Isolated perfused rat hearts were subjected to 20 min global ischemia followed by 60 min reperfusion. At the time of reperfusion, hearts were assigned to the following four groups: 1) untreated control; 2) 50 μM NAG-Bt; 3) 100 μM NAG-Bt; or 4) 50 μM NAG-Ae. All treatment groups significantly increased total O-GlcNAc levels (P < 0.05 vs. control), and this was significantly correlated with improved contractile function and reduced cardiac troponin I release (P < 0.05). Immunohistochemistry of normoxic hearts showed intense nuclear O-GlcNAc staining and higher intensity at Z-lines with colocalization of O-GlcNAc and the Z-line proteins desmin and vinculin. After I/R, there was a marked loss of both cytosolic and nuclear O-GlcNAcylation and disruption of normal striated Z-line structures. OGA inhibition largely preserved structural integrity and attenuated the loss of O-GlcNAcylation; however, nuclear O-GlcNAc levels remained low. Immunoblot analysis confirmed ∼50% loss in both nuclear and cytosolic O-GlcNAcylation following I/R, which was significantly attenuated by OGA inhibition (P < 0.05). These data provide further support for the notion that increasing cardiac O-GlcNAc levels by inhibiting OGA may be a clinically relevant approach for ischemic cardioprotection, in part, by preserving the integrity of O-GlcNAc-associated Z-line protein structures.


Life Sciences | 2013

Post-translational protein modification by O-linked N-acetyl-glucosamine: its role in mediating the adverse effects of diabetes on the heart.

Jennifer L. McLarty; Susan A. Marsh; John C. Chatham

The post-translation attachment of O-linked N-acetylglucosamine, or O-GlcNAc, to serine and threonine residues of nuclear and cytoplasmic proteins is increasingly recognized as a key regulator of diverse cellular processes. O-GlcNAc synthesis is essential for cell survival and it has been shown that acute activation of pathways, which increase cellular O-GlcNAc levels is cytoprotective; however, prolonged increases in O-GlcNAcylation have been implicated in a number of chronic diseases. Glucose metabolism via the hexosamine biosynthesis pathway plays a central role in regulating O-GlcNAc synthesis; consequently, sustained increases in O-GlcNAc levels have been implicated in glucose toxicity and insulin resistance. Studies on the role of O-GlcNAc in regulating cardiomyocyte function have grown rapidly over the past decade and there is growing evidence that increased O-GlcNAc levels contribute to the adverse effects of diabetes on the heart, including impaired contractility, calcium handling, and abnormal stress responses. Recent evidence also suggests that O-GlcNAc plays a role in epigenetic control of gene transcription. The goal of this review is to provide an overview of our current knowledge about the regulation of protein O-GlcNAcylation and to explore in more detail O-GlcNAc-mediated responses in the diabetic heart.


Journal of Biological Chemistry | 2014

Protein O-GlcNAcylation and Cardiovascular (Patho)physiology

Susan A. Marsh; Helen E. Collins; John C. Chatham

Our understanding of the role of protein O-GlcNAcylation in the regulation of the cardiovascular system has increased rapidly in recent years. Studies have linked increased O-GlcNAc levels to glucose toxicity and diabetic complications; conversely, acute activation of O-GlcNAcylation has been shown to be cardioprotective. However, it is also increasingly evident that O-GlcNAc turnover plays a central role in the delicate regulation of the cardiovascular system. Therefore, the goals of this minireview are to summarize our current understanding of how changes in O-GlcNAcylation influence cardiovascular pathophysiology and to highlight the evidence that O-GlcNAc cycling is critical for normal function of the cardiovascular system.


PLOS ONE | 2014

A Systematic Review of Fetal Genes as Biomarkers of Cardiac Hypertrophy in Rodent Models of Diabetes

Emily Cox; Susan A. Marsh

Pathological cardiac hypertrophy activates a suite of genes called the fetal gene program (FGP). Pathological hypertrophy occurs in diabetic cardiomyopathy (DCM); therefore, the FGP is widely used as a biomarker of DCM in animal studies. However, it is unknown whether the FGP is a consistent marker of hypertrophy in rodent models of diabetes. Therefore, we analyzed this relationship in 94 systematically selected studies. Results showed that diabetes induced with cytotoxic glucose analogs such as streptozotocin was associated with decreased cardiac weight, but genetic or diet-induced models of diabetes were significantly more likely to show cardiac hypertrophy (P<0.05). Animal strain, sex, age, and duration of diabetes did not moderate this effect. There were no correlations between the heart weight:body weight index and mRNA or protein levels of the fetal genes α-myosin heavy chain (α-MHC) or β-MHC, sarco/endoplasmic reticulum Ca2+-ATPase, atrial natriuretic peptide (ANP), or brain natriuretic peptide. The only correlates of non-indexed heart weight were the protein levels of α-MHC (Spearmans ρ = 1, P<0.05) and ANP (ρ = −0.73, P<0.05). These results indicate that most commonly measured genes in the FGP are confounded by diabetogenic methods, and are not associated with cardiac hypertrophy in rodent models of diabetes.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy.

Heidi Medford; Karen Porter; Susan A. Marsh

Cardiac hypertrophy induced by pathological stimuli is regulated by a complex formed by the repressor element 1-silencing transcription factor (REST) and its corepressor mSin3A. We previously reported that hypertrophic signaling is blunted by O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins. Regular exercise induces a physiological hypertrophic phenotype in the heart that is associated with decreased O-GlcNAc levels, but a link between O-GlcNAc, the REST complex, and initiation of exercise-induced cardiac hypertrophy is not known. Therefore, mice underwent a single 15- or 30-min bout of moderate- to high-intensity treadmill running, and hearts were harvested immediately and compared with sedentary controls. Cytosolic O-GlcNAc was lower (P < 0.05) following 15 min exercise with no differences in nuclear levels (P > 0.05). There were no differences in cytosolic or nuclear O-GlcNAc levels in hearts after 30 min exercise (P > 0.05). Cellular compartment levels of O-GlcNAc transferase (OGT, the enzyme that removes the O-GlcNAc moiety from proteins), REST, mSin3A, and histone deacetylases (HDACs) 1, 2, 3, 4, and 5 were not changed with exercise. Immunoprecipitation revealed O-GlcNAcylation of OGT and HDACs 1, 2, 4, and 5 that was not changed with acute exercise; however, exercised hearts did exhibit lower interactions between OGT and REST (P < 0.05) but not between OGT and mSin3A. These data suggest that hypertrophic signaling in the heart may be initiated by as little as 15 min of exercise via intracellular changes in protein O-GlcNAcylation distribution and reduced interactions between OGT and the REST chromatin repressor.

Collaboration


Dive into the Susan A. Marsh's collaboration.

Top Co-Authors

Avatar

John C. Chatham

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi Medford

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Aya Matsumoto

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Natalie Strobel

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis J. Dell'Italia

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Emily Cox

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Lindsey Miller

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Peake

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge