Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Azizi is active.

Publication


Featured researches published by Susan Azizi.


International Journal of Molecular Sciences | 2012

Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles

Sanaz Abdolmohammadi; Samira Siyamak; Nor Azowa Ibrahim; Wan Md Zin Wan Yunus; Mohamad Zaki Ab. Rahman; Susan Azizi; Asma Fatehi

This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix.


Molecules | 2015

Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications

Amin Boroumand Moghaddam; Farideh Namvar; Mona Moniri; Paridah Md. Tahir; Susan Azizi; Rosfarizan Mohamad

In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. Among the many possible bio resources, biologically active products from fungi and yeast represent excellent scaffolds for this purpose. Since fungi and yeast are very effective secretors of extracellular enzymes and number of species grow fast and therefore culturing and keeping them in the laboratory are very simple. They are able to produce metal nanoparticles and nanostructure via reducing enzyme intracellularly or extracellularly. The focus of this review is the application of fungi and yeast in the green synthesis of inorganic nanoparticles. Meanwhile the domain of biosynthesized nanoparticles is somewhat novel; the innovative uses in nano medicine in different areas including the delivery of drug, cancer therapy, antibacterial, biosensors, and MRI and medical imaging are reviewed. The proposed signaling pathways of nanoparticles induced apoptosis in cancerous cells and anti-angiogenesis effects also are reviewed. In this article, we provide a short summary of the present study universally on the utilization of eukaryotes like yeast and fungi in the biosynthesis of nanoparticles (NPs) and their uses.


Molecules | 2013

Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles.

Susan Azizi; Mansor Bin Ahmad; Mohd Zobir Hussein; Nor Azowa Ibrahim

Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNCs-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.


International Journal of Nanomedicine | 2014

Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-ag multifunctional nanosized filler

Susan Azizi; Mansor Bin Ahmad; Mohd Zobir Hussein; Nor Azowa Ibrahim; Farideh Namvar

A series of novel bionanocomposites were cast using different contents of zinc oxide-silver nanoparticles (ZnO-AgNPs) stabilized by cellulose nanocrystals (CNC) as multifunctional nanosized fillers in poly(vinyl alcohol)/chitosan (PVA/Cs) matrices. The morphological structure, mechanical properties, ultraviolet-visible absorption, and antimicrobial properties of the prepared films were investigated as a function of their CNC/ZnO-AgNP content and compared with PVA/chitosan/CNC bionanocomposite films. X-ray diffraction and field emission scanning electron microscopic analyses showed that the CNC/ZnO-AgNPs were homogeneously dispersed in the PVA/Cs matrix and the crystallinity increased with increasing nanosized filler content. Compared with pure PVA/Cs, the tensile strength and modulus in the films increased from 0.055 to 0.205 GPa and from 0.395 to 1.20 GPa, respectively. Ultraviolet and visible light can be efficiently absorbed by incorporating ZnO-AgNPs into a PVA/Cs matrix, suggesting that these bionanocomposite films show good visibility and ultraviolet-shielding effects. The bionanocomposite films had excellent antimicrobial properties, killing both Gram-negative Salmonella choleraesuis and Gram-positive Staphylococcus aureus. The enhanced physical properties achieved by incorporating CNC/ZnO-AgNPs could be beneficial in various applications.


Materials | 2013

Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract

Susan Azizi; Farideh Namvar; Mahnaz Mahdavi; Mansor Bin Ahmad; Rosfarizan Mohamad

Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV–Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV–visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.


International Journal of Molecular Sciences | 2014

Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(vinyl alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties

Susan Azizi; Mansor Bin Ahmad; Nor Azowa Ibrahim; Mohd Zobir Hussein; Farideh Namvar

In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.


Evidence-based Complementary and Alternative Medicine | 2015

Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines

Farideh Namvar; Heshu Sulaiman Rahman; Rosfarizan Mohamad; Susan Azizi; Paridah Mohd Tahir; Max Stanley Chartrand; Swee Keong Yeap

The aim of this study is to evaluate the in vitro cytotoxic activity and cellular effects of previously prepared ZnO-NPs on murine cancer cell lines using brown seaweed (Sargassum muticum) aqueous extract. Treated cancer cells with ZnO-NPs for 72 hours demonstrated various levels of cytotoxicity based on calculated IC50 values using MTT assay as follows: 21.7 ± 1.3 μg/mL (4T1), 17.45 ± 1.1 μg/mL (CRL-1451), 11.75 ± 0.8 μg/mL (CT-26), and 5.6 ± 0.55 μg/mL (WEHI-3B), respectively. On the other hand, ZnO-NPs treatments for 72 hours showed no toxicity against normal mouse fibroblast (3T3) cell line. On the other hand, paclitaxel, which imposed an inhibitory effect on WEHI-3B cells with IC50 of 2.25 ± 0.4, 1.17 ± 0.5, and 1.6 ± 0.09 μg/mL after 24, 48, and 72 hours treatment, respectively, was used as positive control. Furthermore, distinct morphological changes were found by utilizing fluorescent dyes; apoptotic population was increased via flowcytometry, while a cell cycle block and stimulation of apoptotic proteins were also observed. Additionally, the present study showed that the caspase activations contributed to ZnO-NPs triggered apoptotic death in WEHI-3 cells. Thus, the nature of biosynthesis and the therapeutic potential of ZnO-NPs could prepare the way for further research on the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer.


Journal of Photochemistry and Photobiology B-biology | 2016

Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica

Susan Azizi; Rosfarizan Mohamad; Azadeh Bahadoran; Saadi Bayat; Raha Abdul Rahim; Arbakariya Ariff; Wan Zuhainis Saad

The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.


Nanomaterials | 2017

Production and Status of Bacterial Cellulose in Biomedical Engineering

Mona Moniri; Amin Boroumand Moghaddam; Susan Azizi; Raha Abdul Rahim; Arbakariya Ariff; Wan Zuhainis Saad; Mohammad Navaderi; Rosfarizan Mohamad

Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.


Journal of Reinforced Plastics and Composites | 2011

Effect of polyethylene-grafted maleic anhydride on properties of high-density polyethylene and polystyrene blend/layered silicate nanocomposites

Susan Azizi; Wan Md Zin Wan Yunus; Mansor Bin Ahmad

Effects of PE-gr-MA on properties of HDPE and PS blend nanocomposite were studied. The surface morphology, thermal stability, and mechanical properties of the composites were characterized. XRD and TEM results show that PE-gr-MA facilitated the intercalation of polymers into layered silicates. The SEM micrographs reveal that the presence of PE-gr-MA greatly increases matrices adhesion but decreases the flexibility of the nanocomposites. The thermal stability, tensile strength, and modulus are enhanced when PE-gr-MA is used.

Collaboration


Dive into the Susan Azizi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farideh Namvar

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mona Moniri

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nor Azowa Ibrahim

National Defence University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mahnaz Mahdavi

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge