Susan E. Kane
City of Hope National Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan E. Kane.
Clinical Cancer Research | 2009
Jian Yu; Susan E. Kane; Jiong Wu; Elisa Benedettini; Daiqiang Li; Cynthia Reeves; Gregory Innocenti; Randy Wetzel; Katherine Crosby; Alison Becker; Michelle Ferrante; Wan Cheung Cheung; Xiqiang Hong; Lucian R. Chirieac; Lynette M. Sholl; Herbert Haack; Bradley L. Smith; Roberto Polakiewicz; Yi Tan; Ting-Lei Gu; Massimo Loda; Xinmin Zhou; Michael J. Comb
Purpose: Activating mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) are found in approximately 10% to 20% of non–small-cell lung cancer (NSCLC) patients and are associated with response to EGFR inhibitors. The most common NSCLC-associated EGFR mutations are deletions in exon 19 and L858R mutation in exon 21, together accounting for 90% of EGFR mutations. To develop a simple, sensitive, and reliable clinical assay for the identification of EGFR mutations in NSCLC patients, we generated mutation-specific rabbit monoclonal antibodies against each of these two most common EGFR mutations and aimed to evaluate the detection of EGFR mutations in NSCLC patients by immunohistochemistry. Experimental Design: We tested mutation-specific antibodies by Western blot, immunofluorescence, and immunohistochemistry. In addition, we stained 40 EGFR genotyped NSCLC tumor samples by immunohistochemistry with these antibodies. Finally, with a panel of four antibodies, we screened a large set of NSCLC patient samples with unknown genotype and confirmed the immunohistochemistry results by DNA sequencing. Results: These two antibodies specifically detect the corresponding mutant form of EGFR by Western blotting, immunofluorescence, and immunohistochemistry. Screening a panel of 340 paraffin-embedded NSCLC tumor samples with these antibodies showed that the sensitivity of the immunohistochemistry assay is 92%, with a specificity of 99% as compared with direct and mass spectrometry–based DNA sequencing. Conclusions: This simple assay for detection of EGFR mutations in diagnostic human tissues provides a rapid, sensitive, specific, and cost-effective method to identify lung cancer patients responsive to EGFR-based therapies.
Cancer Letters | 2002
D. Sadava; Tiphanie Phillips; Cindy Lin; Susan E. Kane
Multiple drug resistance is a significant problem in small-cell lung cancer (SCLC). Artemisinin (ART) is a natural product used to treat drug-resistant malaria. The drug is effective because the Fe2+ present in infected erythrocytes acts non-enzymatically to convert ART to toxic products. We tested the effects of ART on drug-sensitive (H69) and multi-drug-resistant (H69VP) SCLC cells, pretreated with transferrin (TF) to increase the intracellular Fe2+ level. Antibody staining followed by flow cytometry analysis showed twice the level of TF receptors on the H69VP as compared to the H69 cells. Low doses of ART were cytotoxic to SCLC cells. The cytotoxicity of ART for H69VP cells (IC50=24 nM) was ten-fold lower than for H69 cells (IC50=2.3 nM), indicating that ART is part of the drug resistance phenotype. Pretreatment of H69 cells with 220-880 nM TF did not alter the IC50 for ART. However, in the ART-resistant H69VP cells, pretreatment with TF lowered the ART IC50 to near drug-sensitive levels (IC50=5.4 nM after 4 h pretreatment with 880 nM TF). Desferrioxamine (5 microM) inhibited the effect of TF on the IC50 for ART in drug-resistant cells but did not have an effect on ART cytotoxicity in drug-sensitive cells. DNA fragmentation as measured by ELISA occurred within ART-treated cells, with kinetics indicating apoptosis rather than necrosis. This was confirmed by TUNEL staining. These data indicate the potential use of ART and TF in drug-resistant SCLC.
Breast Cancer Research and Treatment | 2005
Carmel T. Chan; Marianne Z. Metz; Susan E. Kane
Her2 (erbB2/neu) is overexpressed in 25–30% of human breast cancers. Herceptin is a recombinant humanized Her2 antibody used to treat breast cancer patients with Her2 overexpression. Over a 5-month selection process, we isolated clones of BT474 (BT) human breast carcinoma cells (BT/HerR) that were resistant to Herceptin in vitro. In BT/HerR subclones, cell-surface, phosphorylated and total cellular Her2 protein remained high in the continuous presence of Herceptin. Likewise, the levels of cell-surface, phosphorylated, and total cellular Her3 and EGFR were either unchanged or only slightly elevated in BT/HerR subclones relative to BT cells. One BT/HerR subclone had substantially upregulated cell-surface EGFR, but this did not correlate with a higher relative resistance to Herceptin. In looking at the downstream PI-3K/Akt signaling pathway, phosphorylated and total Akt levels and Akt kinase activities were all sustained in BT/HerR subclones in the presence of Herceptin, but significantly downregulated in BT cells exposed to Herceptin. Whereas BT cells lost sensitivity to the PI-3K inhibitor LY294002 in the presence of Herceptin, BT/HerR subclones were equally sensitive to this agent in the presence and absence of Herceptin. This suggests that BT/HerR subclones acquired a Herceptin-resistant mechanism of PI-3K signaling. BT/HerR subclones were also sensitive to the EGFR kinase inhibitor AG1478 in the presence of Herceptin, to the same extent as BT cells. The BT/Her R subclones provide new insights into mechanisms of Herceptin resistance and suggest new treatment strategies in combination with other inhibitors targeted to signal transduction pathways.
Cancer Research | 2007
Sean F. Eddy; Susan E. Kane; Gail E. Sonenshein
Overexpression of the epidermal growth factor receptor family member HER2 is found in approximately 30% of breast cancers and is a target for immunotherapy. Trastuzumab, a humanized monoclonal antibody against HER2, is cytostatic when added alone and highly successful in clinical settings when used in combination with other chemotherapeutic agents. Unfortunately, HER2 tumors in patients develop resistance to trastuzumab or metastasize to the brain, which is inaccessible to antibody therapy. Previously, we showed that the green tea polyphenol epigallocatechin-3 gallate (EGCG) inhibits growth and transformed phenotype of Her-2/neu-driven mouse mammary tumor cells. The different modes of action of EGCG and trastuzumab led us to hypothesize that EGCG will inhibit HER2-driven breast cancer cells resistant to trastuzumab. We studied trastuzumab-resistant BT474 human breast cancer cells, isolated by chronic trastuzumab exposure, and JIMT-1 breast cancer cells, derived from a pleural effusion in a patient who displayed clinical resistance to trastuzumab therapy. EGCG treatment caused a dose-dependent decrease in growth and cellular ATP production, and apoptosis at high concentrations. Akt activity was suppressed by EGCG leading to the induction of FOXO3a and target cyclin-dependent kinase inhibitor p27Kip1 levels. Thus, EGCG in combination with trastuzumab may provide a novel strategy for treatment of HER2-overexpressing breast cancers, given that EGCG can cross the blood-brain barrier.
Journal of Liposome Research | 2002
D. Sadava; Aaron Coleman; Susan E. Kane
ABSTRACT Multi-drug resistance due in part to membrane pumps such as P-glycoprotein (Pgp) is a major clinical problem in human cancers. We tested the ability of liposomally-encapsulated daunorubicin (DR) to overcome resistance to this drug. A widely used breast carcinoma cell line originally selected for resistance in doxorubicin (MCF7ADR) was 4-fold resistant to DR compared to the parent MCF7 cells (IC50 79 nM vs. 20 nM). Ovarian carcinoma cells (SKOV3) were made resistant by retroviral transduction of MDR1 cDNA and selection in vinblastine. The resulting SKOV3MGP1 cells were 130-fold resistant to DR compared to parent cells (IC50 5700 nM vs. 44 nM). Small-cell lung carcinoma cells (H69VP) originally selected for resistance to etoposide were 6-fold resistant to DR compared to H69 parent cells (IC50 180 nM vs. 30 nM). In all three cases, encapsulation of DR in liposomes as Daunoxome (Gilead) did not change the IC50 of parent cells relative to free DR. However, liposomal DR overcame resistance in MCF7ADR breast carcinoma cells (IC50 20 nM), SKOV3MGP1 ovarian carcinoma cells (IC50 237 nM) and H69VP small-cell lung carcinoma cells (IC50 27 nM). Empty liposomes did not affect the IC50 for free DR in the three resistant cell lines, nor did empty liposomes affect the IC50 for other drugs that are part of the multi-drug resistance phenotype (etoposide, vincristine) in lung carcinoma cells. These data indicate the possible value of liposomal DR in overcoming Pgp-mediated drug resistance in human cancer.
Molecular Cancer Therapeutics | 2015
Robert Chen; Jessie Hou; Edward M. Newman; Young Kim; Cecile Donohue; Xueli Liu; Sandra H. Thomas; Stephen J. Forman; Susan E. Kane
Brentuximab vedotin (BV) is an antibody–drug conjugate that specifically delivers the potent cytotoxic drug monomethyl auristatin E (MMAE) to CD30-positive cells. BV is FDA approved for treatment of relapsed/refractory Hodgkin lymphoma and anaplastic large cell lymphoma (ALCL); however, many patients do not achieve complete remission and develop BV-resistant disease. We selected for BV-resistant Hodgkin lymphoma (L428) and ALCL (Karpas-299) cell lines using either constant (ALCL) or pulsatile (Hodgkin lymphoma) exposure to BV. We confirmed drug resistance by MTS assay and analyzed CD30 expression in resistant cells by flow cytometry, qRT-PCR, and Western blotting. We also measured drug exporter expression, MMAE resistance, and intracellular MMAE concentrations in BV-resistant cells. In addition, tissue biopsy samples from 10 Hodgkin lymphoma and 5 ALCL patients who had relapsed or progressed after BV treatment were analyzed by immunohistocytochemistry for CD30 expression. The resistant ALCL cell line, but not the Hodgkin lymphoma cell line, demonstrated downregulated CD30 expression compared with the parental cell line. In contrast, the Hodgkin lymphoma cell line, but not the ALCL cell line, exhibited MMAE resistance and increased expression of the MDR1 drug exporter compared with the parental line. For both Hodgkin lymphoma and ALCL, samples from patients relapsed/resistant on BV persistently expressed CD30 by immunohistocytochemistry. One Hodgkin lymphoma patient sample expressed MDR1 by immunohistocytochemistry. Although loss of CD30 expression is a possible mode of BV resistance in ALCL in vitro models, this has not been confirmed in patients. MMAE resistance and MDR1 expression are possible modes of BV resistance for Hodgkin lymphoma both in vitro and in patients. Mol Cancer Ther; 14(6); 1376–84. ©2015 AACR.
Cancer Chemotherapy and Pharmacology | 2002
D. Sadava; Julie Ahn; Mei Zhan; Mei-Lin Pang; Jane Ding; Susan E. Kane
Purpose: We examined the pharmacology, cell biology and molecular biology of small-cell lung carcinoma cells treated with four extracts of Chinese herbal medicines. Many cancer patients take these medicines, but their effects at the cellular level are largely unknown. We were especially interested in the effects on drug-resistant cells, as resistance is a significant clinical problem in lung cancer. Methods: Drug-sensitive (H69), multidrug-resistant (H69VP) and normal lung epithelial cells (BEAS-2) were exposed to extracts from two plants used in Chinese herbal medicine for lung cancer: Glycorrhiza glabra (GLYC) and Olenandria diffusa (OLEN), and to extracts of two commercially available combinations of Chinese herbal medicines, SPES (15 herbs) and PC-SPES (8 herbs). Cytotoxicity was measured in terms of cell growth inhibition (IC50). The kinetics of DNA fragmentation after exposure to the herbal extracts was measured by BudR labeling followed by ELISA. Apoptosis was measured by the TUNEL assay followed by flow cytometry. Expression of apoptosis- and cell cycle-related genes was measured by reverse transcription of mRNA followed by filter hybridization to arrays of probes and detection by chemiluminescence. Results: In each case, the four herbal extracts were equally cytotoxic to H69 and H69VP and less cytotoxic to BEAS-2. All four extracts induced DNA fragmentation in the lung carcinoma cells. The kinetics showed DNA fragments released to the medium (an indication of necrosis) in GLYC-exposed cultures, but inside the cells (an indication of apoptosis) in OLEN-, SPES- and PC-SPES-exposed cultures. TUNEL analysis confirmed that exposure to the latter three extracts, but not to GLYC, led to apoptosis. Compared to untreated and GLYC-treated cells, H69 and H69VP cells treated with OLEN, SPES and PC-SPES showed elevated expression of a number of genes involved in the apoptotic cascade, similar to cells treated with etoposide and vincristine. Conclusion: The Chinese herbal medicine extracts OLEN, SPES and PC-SPES are cytotoxic to both drug-resistant and drug-sensitive lung cancer cells, show some tumor cell specificity compared to their effect on normal cells, and are proapoptotic as measured by DNA breaks and gene expression. The reaction of the tumor cells to these extracts was similar to their reaction to conventional chemotherapeutic drugs.
Cancer Letters | 2009
D. Sadava; David W. Still; Ryan R. Mudry; Susan E. Kane
Multidrug resistance is a major problem in small-cell lung cancer (SCLC). Ganoderma lucidum is a widely used herb in traditional Chinese medicine. We tested the effects of Ganoderma on drug-sensitive (H69) and multi-drug resistant (VPA) human SCLC cells. Both cells showed equal cytotoxicity when incubated with extracts of mycelia of 9 species of Ganoderma, including G. lucidum. Cells treated with the IC(50) of cytotoxic Ganoderma and analyzed by flow cytometry-PI staining showed increases in S phase. When compared untreated controls or SCLC cells treated with extracts of non-cytotoxic Ganoderma species, cells treated with extracts of cytotoxic Ganoderma species responded with an induction of apoptosis similar to cells treated with the chemotherapeutic drugs etoposide and doxorubicin. This was shown by four criteria: increased DNA fragmentation within cells as measured by ELISA; increased TUNEL staining for DNA breaks; increased specific activities of caspases 3 and 9, but not caspase 8 by colorimetric assays, indicating the endogenous pathway; and similar patterns changes in the expressions of 9 genes involved in the cell cycle/apoptosis, as measured by RT-PCR and capillary electrophoresis. Pre-incubation of drug-resistant SCLC cells with cytotoxic Ganoderma reduced the IC(50) for etoposide (3.4-0.21 microM) and doxorubicin (0.19-0.04 microM). These results show that extracts of several species of Ganoderma are cytotoxic to both drug-sensitive and drug-resistant SCLC cells, are pro-apoptotic, induce gene expression patterns that are similar to SCLC cells treated with chemotherapeutic drugs, and can reverse resistance to chemotherapeutic drugs.
Advances in drug research | 1996
Susan E. Kane
Publisher Summary This chapter focuses primarily on recent reports relating to issues that remain unresolved in the field of multidrug-resistance and on developments that have come to the forefront in the past few years. After a brief overview of mdr genes and P-glycoprotein, (Pgp) activity, it discusses the clinical relevance of the human MDR1 gene and Pgp, the mechanism by which Pgp confers drug-resistance and the regulation of MDR1 gene activity in normal and cancer cells. The chapter briefly reviews what is known about other cellular mechanisms for conferring resistance to mdr-related drugs and the clinical aspect of mdr by discussing prospects for overcoming multidrug-resistance in light of what is now known about its mechanisms of action. MDR1 or mdr has been used generically to refer to mammalian genes functional in conferring multidrug-resistance.
Clinical Cancer Research | 2009
Long Gu; Sean K. Lau; Sofia Loera; George Somlo; Susan E. Kane
Purpose: Trastuzumab is a monoclonal antibody targeted to the Her2 receptor and approved for treatment of Her2-positive breast cancer. Among patients who initially respond to trastuzumab therapy, resistance typically arises within 1 year. BT/HerR cells are trastuzumab-resistant variants of Her2-positive BT474 breast cancer cells. The salient feature of BT/HerR cells is failure to downregulate phosphoinositide 3-kinase/Akt signaling on trastuzumab binding. The current work addresses the mechanism of sustained signaling in BT/HerR cells, focusing on the protein kinase A (PKA) pathway. Experimental Design: We performed microarray analysis on BT/HerR and BT474 cell lines to identify genes that were upregulated or downregulated in trastuzumab-resistant cells. Specific genes in the PKA pathway were quantified using reverse transcription-PCR and Western hybridization. Small interfering RNA transfection was used to determine the effects of gene knockdown on cellular response to trastuzumab. Electrophoretic mobility shift assays were used to measure cyclic AMP–responsive element binding activity under defined conditions. Immunohistochemistry was used to analyze protein expression in clinical samples. Results: BT/HerR cells had elevated PKA signaling activity and several genes in the PKA regulatory network had altered expression in these cells. Downregulation of one such gene, the PKA-RIIα regulatory subunit, conferred partial trastuzumab resistance in Her2-positive BT474 and SK-Br-3 cell lines. Forskolin activation of PKA also produced significant protection against trastuzumab-mediated Akt dephosphorylation. In patient samples, PKA signaling appeared to be enhanced in residual disease remaining after trastuzumab-containing neoadjuvant therapy. Conclusions: Activation of PKA signaling may be one mechanism contributing to trastuzumab resistance in Her2-positive breast cancer. We propose a molecular model by which PKA confers its effects. (Clin Cancer Res 2009;15(23):7196–206)