Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Kiefer is active.

Publication


Featured researches published by Susan E. Kiefer.


Cancer Research | 2006

The Structure of Dasatinib (BMS-354825) Bound to Activated ABL Kinase Domain Elucidates Its Inhibitory Activity against Imatinib-Resistant ABL Mutants

John S. Tokarski; John A. Newitt; Chieh Ying J. Chang; Janet D. Cheng; Michael Wittekind; Susan E. Kiefer; Kevin Kish; Francis Y. Lee; Robert Borzillerri; Louis J. Lombardo; Dianlin Xie; Yaqun Zhang; Herbert E. Klei

Chronic myeloid leukemia (CML) is caused by the constitutively activated tyrosine kinase breakpoint cluster (BCR)-ABL. Current frontline therapy for CML is imatinib, an inhibitor of BCR-ABL. Although imatinib has a high rate of clinical success in early phase CML, treatment resistance is problematic, particularly in later stages of the disease, and is frequently mediated by mutations in BCR-ABL. Dasatinib (BMS-354825) is a multitargeted tyrosine kinase inhibitor that targets oncogenic pathways and is a more potent inhibitor than imatinib against wild-type BCR-ABL. It has also shown preclinical activity against all but one of the imatinib-resistant BCR-ABL mutants tested to date. Analysis of the crystal structure of dasatinib-bound ABL kinase suggests that the increased binding affinity of dasatinib over imatinib is at least partially due to its ability to recognize multiple states of BCR-ABL. The structure also provides an explanation for the activity of dasatinib against imatinib-resistant BCR-ABL mutants.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone

John S. Sack; Kevin Kish; Chihuei Wang; Ricardo M. Attar; Susan E. Kiefer; Yongmi An; Ginger Y. Wu; Julie E. Scheffler; Mark E. Salvati; Stanley R. Krystek; Roberto Weinmann; Howard M. Einspahr

The structures of the ligand-binding domains (LBD) of the wild-type androgen receptor (AR) and the T877A mutant corresponding to that in LNCaP cells, both bound to dihydrotestosterone, have been refined at 2.0 Å resolution. In contrast to the homodimer seen in the retinoid-X receptor and estrogen receptor LBD structures, the AR LBD is monomeric, possibly because of the extended C terminus of AR, which lies in a groove at the dimerization interface. Binding of the natural ligand dihydrotestosterone by the mutant LBD involves interactions with the same residues as in the wild-type receptor, with the exception of the side chain of threonine 877, which is an alanine residue in the mutant. This structural difference in the binding pocket can explain the ability of the mutant AR found in LNCaP cells (T877A) to accommodate progesterone and other ligands that the wild-type receptor cannot.


Bioorganic & Medicinal Chemistry Letters | 2008

Benzothiazole based inhibitors of p38α MAP kinase

Chunjian Liu; James Lin; Sidney Pitt; Rosemary Zhang; John S. Sack; Susan E. Kiefer; Kevin Kish; Arthur M. Doweyko; Hongjian Zhang; Punit Marathe; James M. Trzaskos; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

Rational design, synthesis, and SAR studies of a novel class of benzothiazole based inhibitors of p38alpha MAP kinase are described. The issue of metabolic instability associated with vicinal phenyl, benzo[d]thiazol-6-yl oxazoles/imidazoles was addressed by the replacement of the central oxazole or imidazole ring with an aminopyrazole system. The proposed binding mode of this new class of p38alpha inhibitors was confirmed by X-ray crystallographic studies of a representative inhibitor (6a) bound to the p38alpha enzyme.


Journal of Medicinal Chemistry | 2010

Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38α MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

Chunjian Liu; James Lin; Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Alaric J. Dyckman; Tianle Li; John Wityak; Kathleen M. Gillooly; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kim W. McIntyre; Luisa Salter-Cid; David J. Shuster; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; John S. Sack; Susan E. Kiefer; Kevin Kish; John A. Newitt; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

The discovery and characterization of 7k (BMS-582949), a highly selective p38α MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38α inhibitor. Unlike alkyl and other cycloalkyls, the sp(2) character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38α enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38α was confirmed by X-ray crystallographic analysis.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyrazolo-Pyrimidines: A Novel Heterocyclic Scaffold for Potent and Selective P38 Alpha Inhibitors.

Jagabandhu Das; Robert V. Moquin; Sidney Pitt; Rosemary Zhang; Ding Ren Shen; Kim W. McIntyre; Kathleen M. Gillooly; Arthur M. Doweyko; John S. Sack; Hongjian Zhang; Susan E. Kiefer; Kevin Kish; Murray McKinnon; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

The synthesis and structure-activity relationships (SAR) of p38 alpha MAP kinase inhibitors based on a pyrazolo-pyrimidine scaffold are described. These studies led to the identification of compound 2x as a potent and selective inhibitor of p38 alpha MAP kinase with excellent cellular potency toward the inhibition of TNFalpha production. Compound 2x was highly efficacious in vivo in inhibiting TNFalpha production in an acute murine model of TNFalpha production. X-ray co-crystallography of a pyrazolo-pyrimidine analog 2b bound to unphosphorylated p38 alpha is also disclosed.


Bioorganic & Medicinal Chemistry Letters | 2010

Utilization of a nitrogen–sulfur nonbonding interaction in the design of new 2-aminothiazol-5-yl-pyrimidines as p38α MAP kinase inhibitors

Shuqun Lin; Stephen T. Wrobleski; John Hynes; Sidney Pitt; Rosemary Zhang; Yi Fan; Arthur M. Doweyko; Kevin Kish; John S. Sack; Mary F. Malley; Susan E. Kiefer; John A. Newitt; Murray McKinnon; James M. Trzaskos; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

The design, synthesis, and structure-activity relationships (SAR) of a series of 2-aminothiazol-5-yl-pyrimidines as novel p38α MAP kinase inhibitors are described. These efforts led to the identification of 41 as a potent p38α inhibitor that utilizes a unique nitrogen-sulfur intramolecular nonbonding interaction to stabilize the conformation required for binding to the p38α active site. X-ray crystallographic studies that confirm the proposed binding mode of this class of inhibitors in p38 α and provide evidence for the proposed intramolecular nitrogen-sulfur interaction are discussed.


Bioorganic & Medicinal Chemistry Letters | 2008

The discovery of (R)-2-(sec-butylamino)-N-(2-methyl-5-(methylcarbamoyl)phenyl) thiazole-5-carboxamide (BMS-640994)-A potent and efficacious p38alpha MAP kinase inhibitor.

John Hynes; Hong Wu; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Gary L. Schieven; Kathleen M. Gillooly; David J. Shuster; Tracy L. Taylor; Xiaoxia Yang; Kim W. McIntyre; Murray McKinnon; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; Kevin Kish; Susan E. Kiefer; John S. Sack; John A. Newitt; Joel C. Barrish; John H. Dodd; Katerina Leftheris

A novel structural class of p38alpha MAP kinase inhibitors has been identified via iterative SAR studies of a focused deck screen hit. Optimization of the lead series generated 6e, BMS-640994, a potent and selective p38alpha inhibitor that is orally efficacious in rodent models of acute and chronic inflammation.


Bioorganic & Medicinal Chemistry Letters | 2010

5-Amino-pyrazoles as potent and selective p38α inhibitors

Jagabandhu Das; Robert V. Moquin; Alaric J. Dyckman; Tianle Li; Sidney Pitt; Rosemary Zhang; Ding Ren Shen; Kim W. McIntyre; Kathleen M. Gillooly; Arthur M. Doweyko; John A. Newitt; John S. Sack; Hongjian Zhang; Susan E. Kiefer; Kevin Kish; Murray McKinnon; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

The synthesis and structure-activity relationships (SAR) of p38α MAP kinase inhibitors based on a 5-amino-pyrazole scaffold are described. These studies led to the identification of compound 2j as a potent and selective inhibitor of p38α MAP kinase with excellent cellular potency toward the inhibition of TNFα production. Compound 2j was highly efficacious in vivo in inhibiting TNFα production in an acute murine model of TNFα production. X-ray co-crystallography of a 5-amino-pyrazole analog 2f bound to unphosphorylated p38α is also disclosed.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of pyrrolo[2,1-f][1,2,4]triazine C6-ketones as potent, orally active p38α MAP kinase inhibitors

Alaric J. Dyckman; Tianle Li; Sidney Pitt; Rosemary Zhang; Ding Ren Shen; Kim W. McIntyre; Kathleen M. Gillooly; David J. Shuster; Arthur M. Doweyko; John S. Sack; Kevin Kish; Susan E. Kiefer; John A. Newitt; Hongjian Zhang; Punit Marathe; Murray McKinnon; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

Pyrrolo[2,1-f][1,2,4]triazine based inhibitors of p38α have been prepared exploring functional group modifications at the C6 position. Incorporation of aryl and heteroaryl ketones at this position led to potent inhibitors with efficacy in in vivo models of acute and chronic inflammation.


Acta Crystallographica Section D-biological Crystallography | 2008

Structural basis for the high-affinity binding of pyrrolotriazine inhibitors of p38 MAP kinase

John S. Sack; Kevin Kish; Matthew E. Pokross; Dianlin Xie; Gerald J. Duke; Jeffrey Tredup; Susan E. Kiefer; John A. Newitt

The crystal structure of unphosphorylated p38alpha MAP kinase complexed with a representative pyrrolotriazine-based inhibitor led to the elucidation of the high-affinity binding mode of this class of compounds at the ATP-binding site. The ligand binds in an extended conformation, with one end interacting with the adenine-pocket hinge region, including a hydrogen bond from the carboxyl O atom of Met109. The other end of the ligand interacts with the hydrophobic pocket of the binding site and with the backbone N atom of Asp168 in the DFG activation loop. Addition of an extended benzylmorpholine group forces the DFG loop to flip out of position and allows the ligand to make additional interactions with the protein.

Collaboration


Dive into the Susan E. Kiefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge