Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Swithers is active.

Publication


Featured researches published by Susan E. Swithers.


Behavioral Neuroscience | 2008

A Role for Sweet Taste: Calorie Predictive Relations in Energy Regulation by Rats

Susan E. Swithers; Terry L. Davidson

Animals may use sweet taste to predict the caloric contents of food. Eating sweet noncaloric substances may degrade this predictive relationship, leading to positive energy balance through increased food intake and/or diminished energy expenditure. These experiments were designed to test the hypothesis that experiences that reduce the validity of sweet taste as a predictor of the caloric or nutritive consequences of eating may contribute to deficits in the regulation of energy by reducing the ability of sweet-tasting foods that contain calories to evoke physiological responses that underlie tight regulation. Adult male Sprague-Dawley rats were given differential experience with a sweet taste that either predicted increased caloric content (glucose) or did not predict increased calories (saccharin). We found that reducing the correlation between sweet taste and the caloric content of foods using artificial sweeteners in rats resulted in increased caloric intake, increased body weight, and increased adiposity, as well as diminished caloric compensation and blunted thermic responses to sweet-tasting diets. These results suggest that consumption of products containing artificial sweeteners may lead to increased body weight and obesity by interfering with fundamental homeostatic, physiological processes.


Trends in Endocrinology and Metabolism | 2013

Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

Susan E. Swithers

The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.


Physiology & Behavior | 2010

High-intensity sweeteners and energy balance

Susan E. Swithers; Ashley A. Martin; Terry L. Davidson

Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.


International Journal of Obesity | 2004

A Pavlovian approach to the problem of obesity.

Terry L. Davidson; Susan E. Swithers

During the past 15–20 y, the incidence of overweight and obesity in the United States has grown rapidly. The processes that underlie this alarming trend remain largely unspecified. We hypothesize that degradation of the ability to use certain orosensory cues to predict the caloric consequences of intake may contribute to overeating and excessive weight gain. The results of two preliminary studies with rats are consistent with this hypothesis. In one study, the ability of rat pups to regulate their caloric intake after consuming a novel high-calorie, sweet food was disrupted if they had received prior training with sweet tastes that failed to predict the caloric consequences of eating. Another study found that altering the normal predictive relationship between food viscosity and calories led to increased body weight in adult rats. Dietary factors that degrade the relationship between sweet tastes, food viscosity and calories may contribute to overeating and weight gain.


Neuroscience | 2013

Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

Terry L. Davidson; Sara L. Hargrave; Susan E. Swithers; Camille H. Sample; Xue Fu; Kimberly P. Kinzig; Wei Zheng

Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD, on ketogenic (KETO) diet, which is high in saturated fat and low in sugar and other carbohydrates, or continued maintenance on chow (CHOW). Confirming and extending previous findings, diet-induced obese (DIO) rats fed WD showed impaired FN performance, increased blood-brain barrier (BBB) permeability, and increased fasting blood glucose levels compared to CHOW controls and to diet-resistant (DR) rats that did not become obese when maintained on WD. For rats fed the KETO diet, FN performance and BBB integrity were more closely associated with level of circulating ketone bodies than with obesity phenotype (DR or DIO), with higher levels of ketones appearing to provide a protective effect. The evidence also indicated that FN deficits preceded and predicted increased body weight and adiposity. This research (a) further substantiates previous findings of WD-induced deficits in hippocampal-dependent FN discriminations, (b) suggests that ketones may be protective against diet-induced cognitive impairment, and (c) provides evidence that diet-induced cognitive impairment precedes weight gain and obesity.


Behavioral Neuroscience | 2009

General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats.

Susan E. Swithers; Chelsea R. Baker; Terry L. Davidson

In an earlier work (S. E. Swithers & T. L. Davidson, 2008), rats provided with a fixed amount of a yogurt diet mixed with saccharin gained more weight and showed impaired caloric compensation relative to rats given the same amount of yogurt mixed with glucose. The present 4 experiments examined the generality of these findings and demonstrated that increased body weight gain was also demonstrated when animals consumed a yogurt diet sweetened with an alternative high-intensity sweetener (acesulfame potassium; AceK) as well as in animals given a saccharin-sweetened base diet (refried beans) that was calorically similar but nutritionally distinct from low-fat yogurt. These studies also extended earlier findings by showing that body weight differences persist after saccharin-sweetened diets are discontinued and following a shift to a diet sweetened with glucose. In addition, rats first exposed to a diet sweetened with glucose still gain additional weight when subsequently exposed to a saccharin-sweetened diet. The results of these experiments add support to the hypothesis that exposure to weak or nonpredictive relationships between sweet tastes and caloric consequences may lead to positive energy balance.


Quarterly Journal of Experimental Psychology | 2011

Intake of high-intensity sweeteners alters the ability of sweet taste to signal caloric consequences: Implications for the learned control of energy and body weight regulation.

Terry L. Davidson; Ashley A. Martin; Kiely M. Clark; Susan E. Swithers

Recent results from both human epidemiological and experimental studies with animals suggest that intake of noncaloric sweeteners may promote, rather than protect against, weight gain and other disturbances of energy regulation. However, without a viable mechanism to explain how consumption of noncaloric sweeteners can increase energy intake and body weight, the persuasiveness of such results has been limited. Using a rat model, the present research showed that intake of noncaloric sweeteners reduces the effectiveness of learned associations between sweet tastes and postingestive caloric outcomes (Experiment 1) and that interfering with this association may impair the ability of rats to regulate their intake of sweet, but not nonsweet, high-fat and high-calorie food (Experiment 2). The results support the hypothesis that consuming noncaloric sweeteners may promote excessive intake and body weight gain by weakening a predictive relationship between sweet taste and the caloric consequences of eating.


Behavioural Brain Research | 2012

Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats.

Susan E. Swithers; Alycia F. Laboy; Kiely M. Clark; Stephanie Cooper; Terry L. Davidson

Previous work from our lab has demonstrated that experience with high-intensity sweeteners in rats leads to increased food intake, body weight gain and adiposity, along with diminished caloric compensation and decreased thermic effect of food. These changes may occur as a result of interfering with learned relations between the sweet taste of food and the caloric or nutritive consequences of consuming those foods. The present experiments determined whether experience with the high-intensity sweetener saccharin versus the caloric sweetener glucose affected blood glucose homeostasis. The results demonstrated that during oral glucose tolerance tests, blood glucose levels were more elevated in animals that had previously consumed the saccharin-sweetened supplements. In contrast, during glucose tolerance tests when a glucose solution was delivered directly into the stomach, no differences in blood glucose levels between the groups were observed. Differences in oral glucose tolerance responses were not accompanied by differences in insulin release; insulin release was similar in animals previously exposed to saccharin and those previously exposed to glucose. However, release of GLP-1 in response to an oral glucose tolerance test, but not to glucose tolerance tests delivered by gavage, was significantly lower in saccharin-exposed animals compared to glucose-exposed animals. Differences in both blood glucose and GLP-1 release in saccharin animals were rapid and transient, and suggest that one mechanism by which exposure to high-intensity sweeteners that interfere with a predictive relation between sweet tastes and calories may impair energy balance is by suppressing GLP-1 release, which could alter glucose homeostasis and reduce satiety.


Hormones and Behavior | 2008

Influence of ovarian hormones on development of ingestive responding to alterations in fatty acid oxidation in female rats

Susan E. Swithers; Melissa McCurley; Erica Hamilton; Alicia Doerflinger

Adult male rats have been demonstrated to increase food intake in response to administration of drugs that interfere with oxidation of fatty acids (e.g. methyl palmoxirate and mercaptoacetate [MA]), effects that are larger in animals maintained on a high-fat diet. In contrast, while administration of MA has been reported to stimulate food intake in pre-pubertal female rats, food intake is not stimulated by MA in adult female rats. Instead, administration of MA to adult females results in changes in reproductive behavior and physiology. The present experiments were designed to examine the effects of administration of MA on food intake in adult female rats. The results demonstrated that, as previously reported, food intake was stimulated by MA in adult male rats on low-fat and high-fat diets, but food intake was not stimulated by MA in gonadally-intact adult female rats on either low-fat or high-fat diet. Further, MA did not stimulate food intake in female rats ovariectomized as adults. However, when females were ovariectomized prior to the onset of puberty (postnatal day 25-28), food intake was stimulated by administration of MA in adulthood. Finally, cyclic injections of 17-beta-estradiol benzoate given to females ovariectomized prior to the onset of puberty abolished the stimulatory effects of MA on food intake in adult females. Taken together, the data suggest that exposure to estrogens during the time of puberty in female rats can persistently alter adult ingestive responding to signals related to changes in energy utilization.


Appetite | 2015

Artificial sweeteners are not the answer to childhood obesity.

Susan E. Swithers

While no single factor is responsible for the recent, dramatic increases in overweight and obesity, a scientific consensus has emerged suggesting that consumption of sugar-sweetened products, especially beverages, is casually linked to increases in risk of chronic, debilitating diseases including type 2 diabetes, cardiovascular disease, hypertension and stroke. One approach that might be beneficial would be to replace sugar-sweetened items with products manufactured with artificial sweeteners that provide sweet tastes but with fewer calories. Unfortunately, evidence now indicates that artificial sweeteners are also associated with increased risk of the same chronic diseases linked to sugar consumption. Several biologically plausible mechanisms may explain these counterintuitive negative associations. For example, artificial sweeteners can interfere with basic learning processes that serve to anticipate the normal consequences of consuming sugars, leading to overeating, diminished release of hormones such as GLP-1, and impaired blood glucose regulation. In addition, artificial sweeteners can alter gut microbiota in rodent models and humans, which can also contribute to impaired glucose regulation. Use of artificial sweeteners may also be particularly problematic in children since exposure to hyper-sweetened foods and beverages at young ages may have effects on sweet preferences that persist into adulthood. Taken as a whole, current evidence suggests that a focus on reducing sweetener intake, whether the sweeteners are caloric or non-caloric, remains a better strategy for combating overweight and obesity than use of artificial sweeteners.

Collaboration


Dive into the Susan E. Swithers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Collin R. Payne

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge