Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Fanayan is active.

Publication


Featured researches published by Susan Fanayan.


Electrophoresis | 2012

Using lectins to harvest the plasma/serum glycoproteome.

Susan Fanayan; Marina Hincapie; William S. Hancock

Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease‐specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic‐based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS‐based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.


Journal of Proteome Research | 2014

Comparative N-glycan profiling of colorectal cancer cell lines reveals unique bisecting GlcNAc and α-2,3-linked sialic acid determinants are associated with membrane proteins of the more metastatic/aggressive cell lines

Manveen K. Sethi; Morten Thaysen-Andersen; Joshua T. Smith; Mark S. Baker; Nicolle H. Packer; William S. Hancock; Susan Fanayan

Advances in colorectal cancer (CRC) diagnosis will be enhanced by development of more sensitive and reliable methods for early detection of the disease when treatment is more effective. Because many known disease biomarkers are membrane-bound glycoproteins with important biological functions, we chose to compare N-glycan profiles of membrane proteins from three phenotypically different CRC cell lines, LIM1215, LIM1899, and LIM2405, representing moderately differentiated metastatic, moderately differentiated primary, and poorly differentiated (aggressive) primary CRC cell lines, respectively. The N-glycan structures and their relative abundances were determined as their underivatized reduced forms, using porous graphitized carbon LC-ESI-MS/MS. A key observation was the similar N-glycan landscape in these cells with the dominance of high mannose type glycan structures (70-90%) in all three cell lines, suggesting an incomplete glycan processing. Importantly, unique glycan determinants such as bisecting N-acetylglucosamine were observed at a high level in the metastatic LIM1215 cells, with some expressed in the moderately differentiated LIM1899, while none were detected in the poorly differentiated LIM2405 cells. Conversely, α-2,3-sialylation was completely absent in LIM1215 and LIM1899 and present only in LIM2405. RNA-Seq and lectin immunofluorescence data correlated well with these data, showing the highest upregulation of Mgat3 and binding with PHA-E in LIM1215. Downregulation of Man1α1 and Mgat1 in LIM1215 also coincided with the higher degree of incomplete N-glycan processing and accumulation of high mannose type structures as well as bisecting N-glycans when compared to the other two cell lines. This study provides a comprehensive analysis of the membrane N-glycome in three CRC cell lines and identifies N-glycosylation differences that correlate with the histological and pathological features of the cell lines. The unique glycosylation phenotypes may therefore serve as a molecular feature to differentiate CRC disease stages.


Journal of Proteome Research | 2013

Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer

Emma Zhang; Massimo Cristofanilli; Fredika M. Robertson; James M. Reuben; Zhaomei Mu; Ronald C. Beavis; Hogune Im; Michael Snyder; Matan Hofree; Trey Ideker; Gilbert S. Omenn; Susan Fanayan; Seul Ki Jeong; Young-Ki Paik; Anna Fan Zhang; Shiaw Lin Wu; William S. Hancock

In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with reads per kilobase per million mapped reads (RPKM) values for ERBB2 (14.4, 400, and 300 for SUM149, SUM190, and SKBR3, respectively) and for EGFR (60.1, not detected, and 1.4 for the same 3 cell lines). We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines, growth factor receptor-bound protein 7 (GRB7), Crk-like protein (CRKL) and Catenin delta-1 (CTNND1) for ERBB signaling; caveolin 1 (CAV1), plectin (PLEC) for EGFR signaling; filamin A (FLNA) and actinin alpha1 (ACTN1) (associated with high levels of EGFR transcript) for integrin signalings; branched chain amino-acid transaminase 1 (BCAT1), carbamoyl-phosphate synthetase (CAD), nucleolin (NCL) (high levels of EGFR transcript); transferrin receptor (TFRC), metadherin (MTDH) (high levels of ERBB2 transcript) for MYC signaling; S100-A2 protein (S100A2), caveolin 1 (CAV1), Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD domain containing (PYCARD), and EPH receptor A2 (EPHA2) for PI3K signaling, p53 subpathway. Future studies of inflammatory breast cancer (IBC), from which the cell lines were derived, will be used to explore the significance of these observations.


Journal of Proteome Research | 2013

Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405.

Susan Fanayan; Joshua T. Smith; Ling Y. Lee; Fangfei Yan; Michael Snyder; William S. Hancock; Edouard C. Nice

As part of the genome-wide and chromosome-centric human proteomic project (C-HPP), we have integrated shotgun proteomics approach and a genome-wide transcriptomic approach (RNA-Seq) of a set of human colon cancer cell lines (LIM1215, LIM1899 and LIM2405) that were selected to represent a wide range of pathological states of colorectal cancer. The combination of a standard proteomics approach (1D-gel electrophoresis coupled to LC/ion trap mass spectrometry) and RNA-Seq allowed us to exploit the greater depth of the transcriptomics measurement (∼ 9800 transcripts per cell line) versus the protein observations (∼ 1900 protein identifications per cell line). Conversely, the proteomics data were helpful in identifying both cancer associated proteins with differential expression patterns as well as protein networks and pathways which appear to be deregulated in these cell lines. Examples of potential markers include mortalin, nucleophosmin, ezrin, LASP1, alpha and beta forms of spectrin, exportin, the carcinoembryonic antigen family, EGFR and MET. Interaction analyses identified the large intermediate filament family, the protein folding network and adapter proteins in focal adhesion networks, which included the CDC42 and RHOA signaling pathways that may have potential for identifying phenotypic states representing poorly and moderately differentiated states of CRC, with or without metastases.


Glycobiology | 2015

In-depth N-glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation

Manveen K. Sethi; Hoguen Kim; Cheol Keun Park; Mark S. Baker; Young-Ki Paik; Nicolle H. Packer; William S. Hancock; Susan Fanayan; Morten Thaysen-Andersen

Glycomics may assist in uncovering the structure-function relationships of protein glycosylation and identify glycoprotein markers in colorectal cancer (CRC) research. Herein, we performed label-free quantitative glycomics on a carbon-liquid chromatography-tandem mass spectrometry-based analytical platform to accurately profile the N-glycosylation changes associated with CRC malignancy. N-Glycome profiling was performed on isolated membrane proteomes of paired tumorigenic and adjacent non-tumorigenic colon tissues from a cohort of five males (62.6 ± 13.1 y.o.) suffering from colorectal adenocarcinoma. The CRC tissues were typed according to their epidermal growth factor receptor (EGFR) status by western blotting and immunohistochemistry. Detailed N-glycan characterization and relative quantitation identified an extensive structural heterogeneity with a total of 91 N-glycans. CRC-specific N-glycosylation phenotypes were observed including an overrepresentation of high mannose, hybrid and paucimannosidic type N-glycans and an under-representation of complex N-glycans (P < 0.05). Sialylation, in particular α2,6-sialylation, was significantly higher in CRC tumors relative to non-tumorigenic tissues, whereas α2,3-sialylation was down-regulated (P < 0.05). CRC stage-specific N-glycosylation was detected by high α2,3-sialylation and low bisecting β1,4-GlcNAcylation and Lewis-type fucosylation in mid-late relative to early stage CRC. Interestingly, a novel link between the EGFR status and the N-glycosylation was identified using hierarchical clustering of the N-glycome profiles. EGFR-specific N-glycan signatures included high bisecting β1,4-GlcNAcylation and low α2,3-sialylation (both P < 0.05) relative to EGFR-negative CRC tissues. This is the first study to correlate CRC stage and EGFR status with specific N-glycan features, thus advancing our understanding of the mechanisms causing the biomolecular deregulation associated with CRC.


Journal of Proteome Research | 2014

Comprehensive N-Glycome Profiling of Cultured Human Epithelial Breast Cells Identifies Unique Secretome N-Glycosylation Signatures Enabling Tumorigenic Subtype Classification

Ling Y. Lee; Morten Thaysen-Andersen; Mark S. Baker; Nicolle H. Packer; William S. Hancock; Susan Fanayan

The secreted cellular sub-proteome (secretome) is a rich source of biologically active glycoproteins. N-Glycan profiling of secretomes of cultured cancer cells provides an opportunity to investigate the link between protein N-glycosylation and tumorigenesis. Utilizing carbon-LC-ESI-CID-MS/MS of protein released native N-glycans, we accurately profiled the secretome N-glycosylation of six human epithelial breast cells including normal mammary epithelial cells (HMEC) and breast cancer cells belonging to luminal A subtype (MCF7), HER2-overexpressing subtype (SKBR3), and basal B subtype (MDA-MB157, MDA-MB231, HS578T). On the basis of intact molecular mass, LC retention time, and MS/MS fragmentation, a total of 74 N-glycans were confidently identified and quantified. The secretomes comprised significant levels of highly sialylated and fucosylated complex type N-glycans, which were elevated in all cancer cells relative to HMEC (57.7-87.2% vs 24.9%, p < 0.0001 and 57.1-78.0% vs 38.4%, p < 0.0001-0.001, respectively). Similarly, other glycan features were found to be altered in breast cancer secretomes including paucimannose and complex type N-glycans containing bisecting β1,4-GlcNAc and LacdiNAc determinants. Subtype-specific glycosylation were observed, including the preferential expression of α2,3-sialylation in the basal B breast cancer cells. Pathway analysis indicated that the regulated N-glycans were biosynthetically related. Tight clustering of the breast cancer subtypes based on N-glycome signatures supported the involvement of N-glycosylation in cancer. In conclusion, we are the first to report on the secretome N-glycosylation of a panel of breast epithelial cell lines representing different subtypes. Complementing proteome and lipid profiling, N-glycome mapping yields important pieces of structural information to help understand the biomolecular deregulation in breast cancer development and progression, knowledge that may facilitate the discovery of candidate cancer markers and potential drug targets.


Nature Communications | 2017

Accelerating the search for the missing proteins in the human proteome

Mark S. Baker; Seong Beom Ahn; Abidali Mohamedali; Mohammad Tawhidul Islam; David Cantor; Peter D. Verhaert; Susan Fanayan; Samridhi Sharma; Edouard C. Nice; Mark Connor; Shoba Ranganathan

The Human Proteome Project (HPP) aims to discover high-stringency data for all proteins encoded by the human genome. Currently, ∼18% of the proteins in the human proteome (the missing proteins) do not have high-stringency evidence (for example, mass spectrometry) confirming their existence, while much additional information is available about many of these missing proteins. Here, we present MissingProteinPedia as a community resource to accelerate the discovery and understanding of these missing proteins.


Frontiers in Immunology | 2014

Differential site accessibility mechanistically explains subcellular-specific N-glycosylation determinants.

Ling Yen Lee; Chi-Hung Lin; Susan Fanayan; Nicolle H. Packer; Morten Thaysen-Andersen

Glycoproteins perform extra- and intracellular functions in innate and adaptive immunity by lectin-based interactions to exposed glyco-determinants. Herein, we document and mechanistically explain the formation of subcellular-specific N-glycosylation determinants on glycoproteins trafficking through the shared biosynthetic machinery of human cells. LC-MS/MS-based quantitative glycomics showed that the secreted glycoproteins of eight human breast epithelial cells displaying diverse geno- and phenotypes consistently displayed more processed, primarily complex type, N-glycans than the high-mannose-rich microsomal glycoproteins. Detailed subcellular glycome profiling of proteins derived from three breast cell lines (MCF7/MDA468/MCF10A) demonstrated that secreted glycoproteins displayed significantly more α-sialylation and α1,6-fucosylation, but less α-mannosylation, than both the intermediately glycan-processed cell-surface glycoproteomes and the under-processed microsomal glycoproteomes. Subcellular proteomics and gene ontology revealed substantial presence of endoplasmic reticulum resident glycoproteins in the microsomes and confirmed significant enrichment of secreted and cell-surface glycoproteins in the respective subcellular fractions. The solvent accessibility of the glycosylation sites on maturely folded proteins of the 100 most abundant putative N-glycoproteins observed uniquely in the three subcellular glycoproteomes correlated with the glycan type processing thereby mechanistically explaining the formation of subcellular-specific N-glycosylation. In conclusion, human cells have developed mechanisms to simultaneously and reproducibly generate subcellular-specific N-glycosylation using a shared biosynthetic machinery. This aspect of protein-specific glycosylation is important for structural and functional glycobiology and discussed here in the context of the spatio-temporal interaction of glyco-determinants with lectins central to infection and immunity.


Journal of Proteomics | 2015

Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis

Manveen K. Sethi; Morten Thaysen-Andersen; Hoguen Kim; Cheol Keun Park; Mark S. Baker; Nicolle H. Packer; Young-Ki Paik; William S. Hancock; Susan Fanayan

Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers.


Journal of Separation Science | 2012

An optimized approach for enrichment of glycoproteins from cell culture lysates using native multi-lectin affinity chromatography

Ling Y. Lee; Marina Hincapie; Nicolle H. Packer; Mark S. Baker; William S. Hancock; Susan Fanayan

Lectins are capable of recognizing specific glycan structures and serve as invaluable tools for the separation of glycosylated proteins from nonglycosylated proteins in biological samples. We report on the optimization of native multi-lectin affinity chromatography, combining three lectins, namely, concanavalin A, jacalin, and wheat germ agglutinin for fractionation of cellular glycoproteins from MCF-7 breast cancer lysate. We evaluated several conditions for optimum recovery of total proteins and glycoproteins such as low pH and saccharide elution buffers, and the inclusion of detergents in binding and elution buffers. Optimum recovery was observed with overnight incubation of cell lysate with lectins at 4°C, and inclusion of detergent in binding and saccharide elution buffers. Total protein and bound recoveries were 80 and 9%, respectively. Importantly, we found that high saccharide strength elution buffers were not necessary to release bound glycoproteins. This study demonstrates that multi-lectin affinity chromatography can be extended to total cell lysate to investigate the cellular glycoproteome.

Collaboration


Dive into the Susan Fanayan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge