Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan J. Rosser is active.

Publication


Featured researches published by Susan J. Rosser.


Nature Biotechnology | 1999

Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase

Christopher E. French; Susan J. Rosser; Gareth J. Davies; Stephen Nicklin; Neil C. Bruce

Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.


Nature Biotechnology | 2001

Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase

Nerissa K. Hannink; Susan J. Rosser; Christopher E. French; Amrik Basran; James Augustus Henry Murray; Stephen Nicklin; Neil C. Bruce

There is major international concern over the wide-scale contamination of soil and associated ground water by persistent explosives residues. 2,4,6-Trinitrotoluene (TNT) is one of the most recalcitrant and toxic of all the military explosives. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. Significant effort has recently been directed toward the use of plants to extract and detoxify TNT. To explore the possibility of overcoming the high phytotoxic effects of TNT, we expressed bacterial nitroreductase in tobacco plants. Nitroreductase catalyzes the reduction of TNT to hydroxyaminodinitrotoluene (HADNT), which is subsequently reduced to aminodinitrotoluene derivatives (ADNTs). Transgenic plants expressing nitroreductase show a striking increase in ability to tolerate, take up, and detoxify TNT. Our work suggests that expression of nitroreductase (NR) in plants suitable for phytoremediation could facilitate the effective cleanup of sites contaminated with high levels of explosives.


Applied and Environmental Microbiology | 2002

Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous

Helena M. B. Seth-Smith; Susan J. Rosser; Amrik Basran; Emma R. Travis; Eric R. Dabbs; Steve Nicklin; Neil C. Bruce

ABSTRACT Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.


Critical Reviews in Plant Sciences | 2002

Phytoremediation of explosives

Nerissa K. Hannink; Susan J. Rosser; Neil C. Bruce

Referee: Dr. C. Neal Stewart, Jr., Department of Plant Science and Landscape Systems, The University of Tennessee, 2431 Center Drive, Knoxville, TN 37996-4561 There is major international concern over the widescale contamination of soil and associated groundwater by persistant explosives residues. The development of methods to remediate these contaminants has been a significant research interest for several decades. In the last 10 years, phytoremediation has emerged as a focus for explosives remediation because of its low cost, low energy requirements, and promising research observing explosives removal from contaminated groundwater and soil. More recent work has focused on the modes of transformation and metabolism of energetic compounds by plants. These biochemical studies and the experimental conditions enabling the degradation and uptake of explosives by different plant species are discussed.


Nature Structural & Molecular Biology | 2002

Crystal structure of a bacterial cocaine esterase

Nicholas A. Larsen; James M. Turner; James Stevens; Susan J. Rosser; Amrik Basran; Richard A. Lerner; Neil C. Bruce; Ian A. Wilson

Here we report the first structure of a cocaine-degrading enzyme. The bacterial esterase, cocE, hydrolyzes pharmacologically active (−)-cocaine to a nonpsychoactive metabolite with a rate faster than any other reported cocaine esterase (kcat = 7.8 s−1 and KM = 640 nM). Because of the high catalytic proficiency of cocE, it is an attractive candidate for novel protein-based therapies for cocaine overdose. The crystal structure of cocE, solved by multiple anomalous dispersion (MAD) methods, reveals that cocE is a serine esterase composed of three domains: (i) a canonical α/β hydrolase fold (ii) an α-helical domain that caps the active site and (iii) a jelly-roll-like β-domain that interacts extensively with the other two domains. The active site was identified within the interface of all three domains by analysis of the crystal structures of transition state analog adduct and product complexes, which were refined at 1.58 Å and 1.63 Å resolution, respectively. These structural studies suggest that substrate recognition arises partly from interactions between the benzoyl moiety of cocaine and a highly evolved specificity pocket.


Angewandte Chemie | 2012

Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cell‐like Structures

Chiara Martino; Shin-Hyun Kim; Louise Horsfall; Alireza Abbaspourrad; Susan J. Rosser; Jonathan M. Cooper; David A. Weitz

Bringing droplets to life: A cytoskeletal protein (red dots, see scheme) is expressed in artificial cells composed of biocompatible polymersomes, which encapsulate expression machinery and amino acid building blocks. Release of the expressed proteins can be triggered by a negative osmotic shock.


Applied and Environmental Microbiology | 2000

Gene Cloning and Nucleotide Sequencing and Properties of a Cocaine Esterase from Rhodococcus sp. Strain MB1

Matthew M. Bresler; Susan J. Rosser; Amrik Basran; Neil C. Bruce

ABSTRACT A strain of Rhodococcus designated MB1, which was capable of utilizing cocaine as a sole source of carbon and nitrogen for growth, was isolated from rhizosphere soil of the tropane alkaloid-producing plant Erythroxylum coca. A cocaine esterase was found to initiate degradation of cocaine, which was hydrolyzed to ecgonine methyl ester and benzoate; both of these esterolytic products were further metabolized byRhodococcus sp. strain MB1. The structural gene encoding a cocaine esterase, designated cocE, was cloned fromRhodococcus sp. strain MB1 genomic libraries by screening recombinant strains of Rhodococcus erythropolis CW25 for growth on cocaine. The nucleotide sequence of cocEcorresponded to an open reading frame of 1,724 bp that codes for a protein of 574 amino acids. The amino acid sequence of cocaine esterase has a region of similarity with the active serine consensus of X-prolyl dipeptidyl aminopeptidases, suggesting that the cocaine esterase is a serine esterase. The cocE coding sequence was subcloned into the pCFX1 expression plasmid and expressed in Escherichia coli. The recombinant cocaine esterase was purified to apparent homogeneity and was found to be monomeric, with anMr of approximately 65,000. The apparentKm of the enzyme (mean ± standard deviation) for cocaine was measured as 1.33 ± 0.085 mM. These findings are of potential use in the development of a linked assay for the detection of illicit cocaine.


Science | 2016

The Genome Project–Write

Jef D. Boeke; George M. Church; Andrew Hessel; Nancy J. Kelley; Adam P. Arkin; Yizhi Cai; Rob Carlson; Aravinda Chakravarti; Virginia W. Cornish; Liam J. Holt; Farren J. Isaacs; Todd Kuiken; Marc J. Lajoie; Tracy Lessor; Jeantine E. Lunshof; Matthew T. Maurano; Leslie A. Mitchell; Jasper Rine; Susan J. Rosser; Neville E. Sanjana; Pamela A. Silver; David Valle; Harris H. Wang; Jeffrey C. Way; Luhan Yang

We need technology and an ethical framework for genome-scale engineering The Human Genome Project (“HGP-read”), nominally completed in 2004, aimed to sequence the human genome and to improve the technology, cost, and quality of DNA sequencing (1, 2). It was biologys first genome-scale project and at the time was considered controversial by some. Now, it is recognized as one of the great feats of exploration, one that has revolutionized science and medicine.


Nucleic Acids Research | 2014

Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination

Sean D. Colloms; Christine Merrick; Femi J. Olorunniji; W. Marshall Stark; Margaret C. M. Smith; Anne Osbourn; Jay D. Keasling; Susan J. Rosser

Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.


Journal of Molecular Biology | 2014

New Applications for Phage Integrases

Paul C. M. Fogg; Sean D. Colloms; Susan J. Rosser; Marshall W. Stark; Margaret C. M. Smith

Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line.

Collaboration


Dive into the Susan J. Rosser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amrik Basran

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge