W. Marshall Stark
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Marshall Stark.
Trends in Genetics | 1992
W. Marshall Stark; Martin R. Boocock; David J. Sherratt
Site-specific recombination reactions bring about controlled rearrangements of DNA molecules by cutting the DNA at precise points and rejoining the ends to new partners. The recombinases that catalyse these reactions can be grouped into two families by amino acid sequence homology. We describe our current understanding of how these proteins catalyse recombination, and show how the catalytic mechanisms of the two families differ.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Aram Akopian; Jiuya He; Martin R. Boocock; W. Marshall Stark
Site-specific recombination typically occurs only between DNA sequences that have co-evolved with a natural recombinase enzyme to optimize sequence recognition, catalytic efficiency, and regulation. Here, we show that the sequence recognition and the catalysis functions of a recombinase can be specified by unrelated protein domains. We describe chimeric recombinases with a catalytic domain from an activated multiple mutant of the bacterial enzyme Tn3 resolvase, fused to a DNA recognition domain from the mouse transcription factor Zif268. These proteins catalyze efficient recombination specifically at synthetic target sites recognized by two Zif268 domains. Our results demonstrate the functional autonomy of the resolvase catalytic domain and open the way to creating “custom-built” recombinases that act at chosen natural target sequences.
Trends in Genetics | 1989
W. Marshall Stark; Martin R. Boocock; David J. Sherratt
Site-specific recombination processes in microbes bring about precise DNA rearrangements which have diverse and important biological functions. The sites and recombinase enzymes used for these processes fall into two distinct families. Here we describe how experiments with one family, exemplified by the resolution system of transposon Tn3, have provided insight into the ways in which DNA and protein interact to bring together distant recombination sites and promote strand exchange.
Nucleic Acids Research | 2014
Sean D. Colloms; Christine Merrick; Femi J. Olorunniji; W. Marshall Stark; Margaret C. M. Smith; Anne Osbourn; Jay D. Keasling; Susan J. Rosser
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
Molecular Cell | 2001
Gary J. Sarkis; Laura Lea Murley; Andres E. Leschziner; Martin R. Boocock; W. Marshall Stark; Nigel D. F. Grindley
Abstract The serine recombinase γδ resolvase performs site-specific recombination in an elaborate synaptic complex containing 12 resolvase subunits and two 114-base pair res sites. Here we present an alternative structural model for the synaptic complex. Resolvase subunits in the complex contact their neighbors in equivalent ways, using three principal interactions, one of which is a newly proposed synaptic interaction. Evidence in support of this interaction is provided by mutations at the interface that either enable resolvase to synapse two copies of site I or inhibit synapsis of complete res sites. In our model, the two crossover sites are far apart, separated by the resolvase catalytic domains bound to them. Thus, recombination would require a substantial rearrangement of resolvase subunits or domains.
Molecular Microbiology | 2002
Sally-J. Rowland; W. Marshall Stark; Martin R. Boocock
The Sin recombinase from Staphylococcus aureus builds a distinctive DNA‐protein synaptic complex to regulate strand exchange. Sin binds at two sites within an 86 basepair (bp) recombination site, resH. We propose that inverted motifs at the crossover site, and tandem motifs at the regulatory site, are recognized by structurally disparate Sin dimers. An essential architectural protein, Hbsu, binds at a discrete central site in resH. Positions of Hbsu‐induced DNA deformation coincide with natural targets for Tn552 integration. Remarkably, Sin has the same topological selectivity as Tn3 and γδ resolvases. Our model for the recombination synapse has at its core an assembly of four Sin dimers; Hbsu plays an architectural role that is taken by two resolvase dimers in models of the Tn3/γδ synapse.
Molecular Microbiology | 2004
Mary E. Burke; Patricia H. Arnold; Jiuya He; Sandra V. C. T. Wenwieser; Sally-J. Rowland; Martin R. Boocock; W. Marshall Stark
Catalysis of DNA recombination by Tn3 resolvase is conditional on prior formation of a synapse, comprising 12 resolvase subunits and two recombination sites (res). Each res binds a resolvase dimer at site I, where strand exchange takes place, and additional dimers at two adjacent ‘accessory’ binding sites II and III. ‘Hyperactive’ resolvase mutants, that catalyse strand exchange at site I without accessory sites, were selected in E. coli. Some single mutants can resolve a res × site I plasmid (that is, with one res and one site I), but two or more activating mutations are necessary for efficient resolution of a site I × site I plasmid. Site I × site I resolution by hyperactive mutants can be further stimulated by mutations at the crystallographic 2–3′ interface that abolish activity of wild‐type resolvase. Activating mutations may allow regulatory mechanisms of the wild‐type system to be bypassed, by stabilizing or destabilizing interfaces within and between subunits in the synapse. The positions and characteristics of the mutations support a mechanism for strand exchange by serine recombinases in which the DNA is on the outside of a recombinase tetramer, and the tertiary/quaternary structure of the tetramer is reconfigured.
Molecular Cell | 2008
Kent W. Mouw; Sally-J. Rowland; Mark Gajjar; Martin R. Boocock; W. Marshall Stark; Phoebe A. Rice
Summary An essential feature of many site-specific recombination systems is their ability to regulate the direction and topology of recombination. Resolvases from the serine recombinase family assemble an interwound synaptic complex that harnesses negative supercoiling to drive the forward reaction and promote recombination between properly oriented sites. To better understand the interplay of catalytic and regulatory functions within these synaptic complexes, we have solved the structure of the regulatory site synapse in the Sin resolvase system. It reveals an unexpected synaptic interface between helix-turn-helix DNA-binding domains that is also highlighted in a screen for synapsis mutants. The tetramer defined by this interface provides the foundation for a robust model of the synaptic complex, assembled entirely from available crystal structures, that gives insight into how the catalytic activity of Sin and other serine recombinases may be regulated.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Femi J. Olorunniji; Dorothy Buck; Sean D. Colloms; Andrew R. McEwan; Margaret C. M. Smith; W. Marshall Stark; Susan J. Rosser
Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a “subunit rotation” mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid “phes” recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive “360° rotation” rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory “gating” mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round.
Structure | 2011
Ross A. Keenholtz; Sally-J. Rowland; Martin R. Boocock; W. Marshall Stark; Phoebe A. Rice
Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 Å crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.