Susan L. Kozak
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan L. Kozak.
Nature Medicine | 2003
Mariana Marin; Kristine M. Rose; Susan L. Kozak; David Kabat
The viral infectivity factor (Vif) encoded by HIV-1 neutralizes a potent antiviral pathway that occurs in human T lymphocytes and several leukemic T-cell lines termed nonpermissive, but not in other cells termed permissive. In the absence of Vif, this antiviral pathway efficiently inactivates HIV-1. It was recently reported that APOBEC3G (also known as CEM-15), a cytidine deaminase nucleic acid–editing enzyme, confers this antiviral phenotype on permissive cells. Here we describe evidence that Vif binds APOBEC3G and induces its rapid degradation, thus eliminating it from cells and preventing its incorporation into HIV-1 virions. Studies of Vif mutants imply that it contains two domains, one that binds APOBEC3G and another with a conserved SLQ(Y/F)LA motif that mediates APOBEC3G degradation by a proteasome-dependent pathway. These results provide promising approaches for drug discovery.
Journal of Virology | 2000
Shawn E. Kuhmann; Emily J. Platt; Susan L. Kozak; David Kabat
ABSTRACT In addition to the primary cell surface receptor CD4, CCR5 or another coreceptor is necessary for infections by human immunodeficiency virus type 1 (HIV-1), yet the mechanisms of coreceptor function and their stoichiometries in the infection pathway remain substantially unknown. To address these issues, we studied the effects of CCR5 concentrations on HIV-1 infections using wild-type CCR5 and two attenuated mutant CCR5s, one with the mutation Y14N at a critical tyrosine sulfation site in the amino terminus and one with the mutation G163R in extracellular loop 2. The Y14N mutation converted a YYT sequence at positions 14 to 16 to an NYT consensus site for N-linked glycosylation, and the mutant protein was shown to be glycosylated at that position. The relationships between HIV-1 infectivity values and CCR5 concentrations took the form of sigmoidal (S-shaped) curves, which were dramatically altered in different ways by these mutations. Both mutations shifted the curves by factors of approximately 30- to 150-fold along the CCR5 concentration axis, consistent with evidence that they reduce affinities of virus for the coreceptor. In addition, the Y14N mutation specifically reduced the maximum efficiencies of infection that could be obtained at saturating CCR5 concentrations. The sigmoidal curves for all R5 HIV-1 isolates were quantitatively consistent with a simple mathematical model, implying that CCR5s reversibly associate with cell surface HIV-1 in a concentration-dependent manner, that approximately four to six CCR5s assemble around the virus to form a complex needed for infection, and that both mutations inhibit assembly of this complex but only the Y14N mutation also significantly reduces its ability to successfully mediate HIV-1 infections. Although several alternative models would be compatible with our data, a common feature of these alternatives is the cooperation of multiple CCR5s in the HIV-1 infection pathway. This cooperativity will need to be considered in future studies to address in detail the mechanism of CCR5-mediated HIV-1 membrane fusion.
Journal of Biological Chemistry | 2006
Susan L. Kozak; Mariana Marin; Kristine M. Rose; Cory Bystrom; David Kabat
Deoxycytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) (members of the apolipoprotein B mRNA-editing catalytic polypeptide 3 family) have RNA-binding motifs, invade assembling human immunodeficiency virus (HIV-1), and hypermutate reverse transcripts. Antagonistically, HIV-1 viral infectivity factor degrades these enzymes. A3G is enzymatically inhibited by binding RNA within an unidentified large cytosolic ribonucleoprotein, implying that RNA degradation during reverse transcription may activate intravirion A3G at the necessary moment. We purified a biologically active tandem affinity-tagged A3G from human HEK293T cells. Mass spectrometry and coimmunoprecipitation from HEK293T and T lymphocyte extracts identified many RNA-binding proteins specifically associated with A3G and A3F, including poly(A)-binding proteins (PABPs), YB-1, Ro-La, RNA helicases, ribosomal proteins, and Staufen1. Most strikingly, nearly all A3G-associated proteins were known to bind exclusively or intermittently to translating and/or dormant mRNAs. Accordingly, A3G in HEK293T and T lymphocyte extracts was almost completely in A3G-mRNA-PABP complexes that shifted reversibly between polysomes and dormant pools in response to translational inhibitors. For example arsenite, which inhibits 5′-cap-dependent translational initiation, shifted mRNA-A3G-PABP from polysomes into stress granules in a manner that was blocked and reversed by the elongation inhibitor cycloheximide. Immunofluorescence microscopy showed A3G-mRNA-PABP stress granules only partially overlapping with Staufen1. A3G coimmunoprecipitated HIV-1 RNA and many mRNAs. Ribonuclease released nearly all A3G-associated proteins, including A3G homo-oligomers and A3G-A3F hetero-oligomers, but the viral infectivity factor remained bound. Many proteins and RNAs associated with A3G are excluded from A3G-containing virions, implying that A3G competitively partitions into virions based on affinity for HIV-1 RNA.
Journal of Virology | 2002
Susan L. Kozak; Jean Michel Heard; David Kabat
ABSTRACT Recent evidence has suggested that plasma membrane sphingolipids and cholesterol spontaneously coalesce into raft-like microdomains and that specific proteins, including CD4 and some other T-cell signaling molecules, sequester into these rafts. In agreement with these results, we found that CD4 and the associated Lck tyrosine kinase of peripheral blood mononuclear cells and H9 leukemic T cells were selectively and highly enriched in a low-density lipid fraction that was resistant at 0°C to the neutral detergent Triton X-100 but was disrupted by extraction of cholesterol with filipin or methyl-β-cyclodextrin. In contrast, the CXCR4 chemokine receptor, a coreceptor for X4 strains of human immunodeficiency virus type 1 (HIV-1), was almost completely excluded from the detergent-resistant raft fraction. Accordingly, as determined by immunofluorescence with confocal microscopy, CD4 and CXCR4 did not coaggregate into antibody-induced cell surface patches or into patches of CXCR4 that formed naturally at the ruffled edges of adherent cells. The CXCR4 fluorescent patches were extracted with cold 1% Triton X-100, whereas the CD4 patches were resistant. In stringent support of these data, CD4 colocalized with patches of cholera toxin bound to the raft-associated sphingoglycolipid GM1, whereas CXCR4 did not. Addition of the CXCR4-activating chemokine SDF-1α did not induce CXCR4 movement into rafts. Moreover, binding of purified monomeric gp120 envelope glycoproteins from strains of HIV-1 that use this coreceptor did not stimulate detectable redistributions of CD4 or CXCR4 between their separate membrane domains. However, adsorption of multivalent gp120-containing HIV-1 virion particles appeared to destabilize the local CD4-containing rafts. Indeed, adsorbed HIV-1 virions were detected by immunofluorescence microscopy and were almost all situated in nonraft regions of the cell surface. We conclude that HIV-1 initially binds to CD4 in a raft domain and that its secondary associations with CXCR4 require shifts of proteins and associated lipids away from their preferred lipid microenvironments. Our evidence suggests that these changes in protein-lipid interactions destabilize the plasma membrane microenvironment underlying the virus by at least several kilocalories per mole, and we propose that this makes an important contribution to fusion of the viral and cellular membranes during infection. Thus, binding of HIV-1 may be favored by the presence of CD4 in rafts, but the rafts may then disperse prior to the membrane fusion reaction.
Journal of Virology | 2009
Emily J. Platt; Miroslawa Bilska; Susan L. Kozak; David Kabat; David C. Montefiori
ABSTRACT The TZM-bl cell line that is commonly used to assess neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) was recently reported to be contaminated with an ecotropic murine leukemia virus (MLV) (Y. Takeuchi, M. O. McClure, and M. Pizzato, J. Virol. 82:12585-12588, 2008), raising questions about the validity of results obtained with this cell line. Here we confirm this observation and show that HIV-1 neutralization assays performed with a variety of serologic reagents in a similar cell line that does not harbor MLV yield results that are equivalent to those obtained in TZM-bl cells. We conclude that MLV contamination has no measurable effect on HIV-1 neutralization when TZM-bl cells are used as targets for infection.
Journal of Virology | 2010
Emily J. Platt; Susan L. Kozak; James P. Durnin; Thomas J. Hope; David Kabat
ABSTRACT By using immunofluorescence microscopy to observe and analyze freshly made HIV-1 virions adsorbed onto cells, we found that they are inherently highly infectious, rather than predominantly defective as previously suggested. Surprisingly, polycations enhance titers 20- to 30-fold by stabilizing adsorption and preventing a previously undescribed process of rapid dissociation, strongly implying that infectivity assays for many viruses are limited not only by inefficient virus diffusion onto cells but also by a postattachment race between entry and dissociation. This kinetic competition underlies inhibitory effects of CCR5 antagonists and explains why adaptive HIV-1 mutations overcome many cell entry limitations by accelerating entry.
Journal of Virology | 2008
Mariana Marin; Sheetal Golem; Kristine M. Rose; Susan L. Kozak; David Kabat
ABSTRACT VifIIIB, which has been a standard model for the viral infectivity factor of human immunodeficiency virus type 1 (HIV-1), binds the cytidine deaminase APOBEC3G (A3G) and induces its degradation, thereby precluding its lethal incorporation into assembling virions. Additionally, VifIIIB less efficiently degrades A3F, another potent anti-HIV-1 cytidine deaminase. Although the APOBEC3 paralogs A3A, A3B, and A3C have weaker anti-HIV-1 activities and are only partially degraded by VifIIIB, we found that VifIIIB induces their emigration from the nucleus to the cytosol and thereby causes net increases in the cytosolic concentrations and anti-HIV-1 activities of A3A and A3B. In contrast, some other Vifs, exemplified by VifHXB2 and VifELI-1, much more efficiently degrade and thereby neutralize all APOBEC3s. Studies focused mainly on A3F imply that it occurs associated with mRNA-PABP1 in translationally active polysomes and to a lesser extent in mRNA processing bodies (P-bodies). A3F appears to stabilize the P-bodies with which it is associated. A correspondingly small proportion of VifIIIB also localizes in P-bodies in an A3F-dependent manner. Stress causes A3A, A3B, A3C, and A3F to colocalize efficiently with VifIIIB and mRNA-PABP1 complexes in stress granules in a manner that is prevented by cycloheximide, an inhibitor of translational elongation. Coimmunoprecipitation studies suggest that Vifs from different HIV-1 isolates associate with all tested APOBEC3s. Thus, Vifs interact closely with structurally diverse APOBEC3s, with effects on their subcellular localization, degradation rates, and antiviral activities. Cytosolic APOBEC3-Vif complexes are predominantly bound to mRNAs that dynamically move between translationally active and storage or processing pools.
Journal of Biological Chemistry | 1999
Susan L. Kozak; Shawn E. Kuhmann; Emily J. Platt; David Kabat
Infections by human immunodeficiency virus type 1 (HIV-1) involve interactions of the viral envelope glycoprotein gp120 with CD4 and then with a coreceptor. R5 isolates of HIV-1 use CCR5 as a coreceptor, whereas X4 isolates use CXCR4. It is not known whether coreceptors merely trigger fusion of the viral and cellular membranes or whether they also influence the energetics of virus adsorption, the placement of the membrane fusion reaction, and the metabolism of adsorbed gp120. Surprisingly, the pathway for metabolism of adsorbed gp120 has not been investigated thoroughly in any cells. To address these issues, we used purified125I-gp120s derived from the R5 isolate BaL and from the X4 isolate IIIB as ligands for binding onto human cells that expressed CD4 alone or CD4 with a coreceptor. The gp120 preparations were active in forming ternary complexes with CD4 and the appropriate coreceptor. Moreover, the cellular quantities of CD4 and coreceptors were sufficient for efficient infections by the corresponding HIV-1 isolates. In these conditions, the kinetics and affinities of125I-gp120 adsorptions and their subsequent metabolisms were strongly dependent on CD4 but were not significantly influenced by CCR5 or CXCR4. After binding to CD4, the 125I-gp120s slowly became resistant to extraction from the cell monolayers by pH 3.0 buffer, suggesting that they were endocytosed with half-times of 1–2 h. Within 20–30 min of endocytosis, the 125I-gp120s were proteolytically degraded to small products that were shed into the media. The weak base chloroquine strongly inhibited125I-gp120 proteolysis and caused its intracellular accumulation, suggesting involvement of a low pH organelle. Results supporting these methods and conclusions were obtained by confocal immunofluorescence microscopy. We conclude that the energetics, kinetics, and pathways of 125I-gp120 binding, endocytosis, and proteolysis are determined principally by CD4 rather than by coreceptors in cells that contain sufficient coreceptors for efficient infections. Therefore, the role of coreceptors in HIV-1 infections probably does not include steerage or subcellular localization of adsorbed virus.
AIDS Research and Human Retroviruses | 2000
Emily J. Platt; Susan L. Kozak; David Kabat
Strains of human immunodeficiency virus type 1 (HIV-1) that use the coreceptor CXCR4 (X4 strains) become laboratory adapted (LA) when selected for ability to replicate in leukemic T cell lines such as H9. Compared with patient X4 viruses, the gp120-gp41 complexes of LA viruses have a constellation of common properties including enhanced affinities for CD4, greater sensitivities to inactivations by diverse antibodies and by soluble CD4, increased shedding of gp120, and improved abilities to infect HeLa-CD4 cell clones that contain only trace quantities of CD4. These common characteristics, which may result from a concerted structural rearrangement of the gp120-gp41 complexes, have made it difficult to identify a specific feature that is critical for laboratory adaptation. To test the hypothesis that replication of patient X4 HIV-1 is limited by the low CD4 concentration in H9 cells (7.0 x 10(3) CD4/cell), we constructed H9 derivatives that express at least 10 times more of this receptor. Interestingly, most patient X4 isolates readily grew in these derivative cells, and the resulting virus preparations retained the characteristics of primary viruses throughout multiple passages. In contrast, selection of the same viruses in the parental H9 cells resulted in outgrowth of LA derivatives. We conclude that a weak interaction of patient X4 HIV-1 isolates with CD4 is the primary factor that limits their replication in leukemic T cell lines.
Journal of Molecular Medicine | 1995
Maureen E. Hoatlin; Susan L. Kozak; C. Spiro; David Kabat
Ping-pong amplification is an efficient process by which helper-free retrovirions replicate in cocultures of cell lines that package retroviruses into distinct hostrange envelopes [11]. Transfection of a retroviral vector DNA into these cocultures results in massive virus production, with potentially endless cross-infection between different types of packaging cells. Because the helperfree virus spreads efficiently throughout the coculture, it is unnecessary to use dominant selectable marker genes, and the retroviral vectors can be simplified and optimized for expressing a single gene of interest. The most efficient ping-pong vector, pSFF, derived from the Friend erythroleukemia virus, has been used for high-level expression of several genes that could not be expressed with commonly employed two-gene retroviral vectors. Contrary to previous claims, problems of vector recombination are not inherent to ping-pong methods. Indeed, the pSFF vector has not formed replication-competent recombinants as shown by stringent assays. Here we review these methods, characterize the ping-pong process using the human erythropoietin gene as a model, and describe a new vector (pSFY) designed for enhanced expression in T lymphocytes. Factors that limit tissue-specific expression are reviewed.