Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan L. Uprichard is active.

Publication


Featured researches published by Susan L. Uprichard.


Nature Medicine | 2012

Identification of the Niemann-Pick C1–like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor

Bruno Sainz; Naina Barretto; Danyelle N. Martin; Nobuhiko Hiraga; Michio Imamura; Snawar Hussain; Katherine A. Marsh; Xuemei Yu; Kazuaki Chayama; Waddah A. Alrefai; Susan L. Uprichard

Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ∼170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1–like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture–derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe potently blocks HCV uptake in vitro via a virion cholesterol–dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life

Jeremie Guedj; Harel Dahari; Libin Rong; Natasha D. Sansone; Richard E. Nettles; Scott J. Cotler; Thomas J. Layden; Susan L. Uprichard; Alan S. Perelson

The nonstructural 5A (NS5A) protein is a target for drug development against hepatitis C virus (HCV). Interestingly, the NS5A inhibitor daclatasvir (BMS-790052) caused a decrease in serum HCV RNA levels by about two orders of magnitude within 6 h of administration. However, NS5A has no known enzymatic functions, making it difficult to understand daclatasvir’s mode of action (MOA) and to estimate its antiviral effectiveness. Modeling viral kinetics during therapy has provided important insights into the MOA and effectiveness of a variety of anti-HCV agents. Here, we show that understanding the effects of daclatasvir in vivo requires a multiscale model that incorporates drug effects on the HCV intracellular lifecycle, and we validated this approach with in vitro HCV infection experiments. The model predicts that daclatasvir efficiently blocks two distinct stages of the viral lifecycle, namely viral RNA synthesis and virion assembly/secretion with mean effectiveness of 99% and 99.8%, respectively, and yields a more precise estimate of the serum HCV half-life, 45 min, i.e., around four times shorter than previous estimates. Intracellular HCV RNA in HCV-infected cells treated with daclatasvir and the HCV polymerase inhibitor NM107 showed a similar pattern of decline. However, daclatasvir treatment led to an immediate and rapid decline of extracellular HCV titers compared to a delayed (6–9 h) and slower decline with NM107, confirming an effect of daclatasvir on both viral replication and assembly/secretion. The multiscale modeling approach, validated with in vitro kinetic experiments, brings a unique conceptual framework for understanding the mechanism of action of a variety of agents in development for the treatment of HCV.


FEBS Letters | 2005

The therapeutic potential of RNA interference

Susan L. Uprichard

In recent years, we have witnessed the discovery of a new mechanism of gene regulation called RNA interference (RNAi), which has revitalized interest in the development of nucleic acid‐based technologies for therapeutic gene suppression. This review focuses on the potential therapeutic use of RNAi, discussing the theoretical advantages of RNAi‐based therapeutics over previous technologies as well as the challenges involved in developing RNAi for clinical use. Also reviewed, are the in vivo proof‐of principle experiments that provide the preclinical justification for the continued development of RNAi‐based therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Identification of transferrin receptor 1 as a hepatitis C virus entry factor

Danyelle N. Martin; Susan L. Uprichard

Hepatitis C virus (HCV) is a liver tropic pathogen that affects ∼170 million people worldwide and causes liver pathologies including fibrosis, cirrhosis, steatosis, iron overload, and hepatocellular carcinoma. As part of a project initially directed at understanding how HCV may disrupt cellular iron homeostasis, we found that HCV alters expression of the iron uptake receptor transferrin receptor 1 (TfR1). After further investigation, we found that TfR1 mediates HCV entry. Specifically, functional studies showed that TfR1 knockdown and antibody blocking inhibit HCV cell culture (HCVcc) infection. Blocking cell surface TfR1 also inhibited HCV pseudoparticle (HCVpp) infection, demonstrating that TfR1 acts at the level of HCV glycoprotein-dependent entry. Likewise, a TfR1 small-molecule inhibitor that causes internalization of surface TfR1 resulted in a decrease in HCVcc and HCVpp infection. In kinetic studies, TfR1 antibody blocking lost its inhibitory activity after anti-CD81 blocking, suggesting that TfR1 acts during HCV entry at a postbinding step after CD81. In contrast, viral spread assays indicated that HCV cell-to-cell spread is less dependent on TfR1. Interestingly, silencing of the TfR1 trafficking protein, a TfR-1 specific adaptor protein required for TfR1 internalization, also inhibited HCVcc infection. On the basis of these results, we conclude that TfR1 plays a role in HCV infection at the level of glycoprotein-mediated entry, acts after CD81, and possibly is involved in HCV particle internalization.


Journal of Virology | 2002

Cytokine-sensitive replication of hepatitis B virus in immortalized mouse hepatocyte cultures.

Valerie Pasquetto; Stefan Wieland; Susan L. Uprichard; Marco Tripodi; Francis V. Chisari

ABSTRACT We have previously shown that alpha/beta interferon (IFN-α/β) and gamma interferon (IFN-γ) inhibit hepatitis B virus (HBV) replication by eliminating pregenomic RNA containing viral capsids from the hepatocyte. We have also shown that HBV-specific cytotoxic T lymphocytes that induce IFN-γ and tumor necrosis factor alpha (TNF-α) in the liver can inhibit HBV gene expression by destabilizing preformed viral mRNA. In order to further study the antiviral activity of IFN-α/β, IFN-γ, and TNF-α at the molecular level, we sought to reproduce these observations in an in vitro system. Accordingly, hepatocytes were derived from the livers of HBV-transgenic mice that also expressed the constitutively active cytoplasmic domain of the human hepatocyte growth factor receptor (c-Met). Here, we show that the resultant well-differentiated, continuous hepatocyte cell lines (HBV-Met) replicate HBV and that viral replication in these cells is efficiently controlled by IFN-α/β or IFN-γ, which eliminate pregenomic RNA-containing capsids from the cells as they do in the liver. Furthermore, we demonstrate that IFN-γ, but not IFN-α/β, is capable of inhibiting HBV gene expression in this system, especially when it acts synergistically with TNF-α. These cells should facilitate the analysis of the intracellular signaling pathways and effector mechanisms responsible for these antiviral effects.


Virology Journal | 2006

Replication of a hepatitis C virus replicon clone in mouse cells

Susan L. Uprichard; Josan Chung; Francis V. Chisari; Takaji Wakita

BackgroundHepatitis C Virus (HCV) is a significant public health burden and small animal models are needed to study the pathology and immunobiology of the virus. In effort to develop experimental HCV mouse models, we screened a panel of HCV replicons to identify clones capable of replicating in mouse hepatocytes.ResultsWe report the establishment of stable HCV replication in mouse hepatocyte and fibroblast cell lines using replicons derived from the JFH-1 genotype 2a consensus sequence. Viral RNA replication efficiency in mouse cells was comparable to that observed in human Huh-7 replicon cells, with negative-strand HCV RNA and the viral NS5A protein being readily detected by Northern and Western Blot analysis, respectively. Although HCV replication was established in the absence of adaptive mutations that might otherwise compromise the in vitro infectivity of the JFH-1 clone, no infectious virus was detected when the culture medium from full length HCV RNA replicating mouse cells was titrated on Huh-7 cells, suggesting that the mouse cells were unable to support production of infectious progeny viral particles. Consistent with an additional block in viral entry, infectious JFH-1 particles produced in Huh-7 cells were not able to establish detectable HCV RNA replication in naïve mouse cells.ConclusionThus, this report expands the repertoire of HCV replication systems and possibly represents a step toward developing mouse models of HCV replication, but it also highlights that other species restrictions might continue to make the development of a purely murine HCV infectious model challenging.


Virology Journal | 2009

Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection

Bruno Sainz; Veronica TenCate; Susan L. Uprichard

BackgroundIn order to elucidate how Hepatitis C Virus (HCV) interacts with polarized hepatocytes in vivo and how HCV-induced alterations in cellular function contribute to HCV-associated liver disease, a more physiologically relevant hepatocyte culture model is needed. As such, NASA-engineered three-dimensional (3-D) rotating wall vessel (RWV) bioreactors were used in effort to promote differentiation of HCV-permissive Huh7 hepatoma cells.ResultsWhen cultured in the RWV, Huh7 cells became morphologically and transcriptionally distinct from more standard Huh7 two-dimensional (2-D) monolayers. Specifically, RWV-cultured Huh7 cells formed complex, multilayered 3-D aggregates in which Phase I and Phase II xenobiotic drug metabolism genes, as well as hepatocyte-specific transcripts (HNF4α, Albumin, TTR and α1AT), were upregulated compared to 2-D cultured Huh7 cells. Immunofluorescence analysis revealed that these HCV-permissive 3-D cultured Huh7 cells were more polarized than their 2D counterparts with the expression of HCV receptors, cell adhesion and tight junction markers (CD81, scavenger receptor class B member 1, claudin-1, occludin, ZO-1, β-Catenin and E-Cadherin) significantly increased and exhibiting apical, lateral and/or basolateral localization.ConclusionThese findings show that when cultured in 3-D, Huh7 cells acquire a more differentiated hepatocyte-like phenotype. Importantly, we show that these 3D cultures are highly permissive for HCV infection, thus providing an opportunity to study HCV entry and the effects of HCV infection on host cell function in a more physiologically relevant cell culture system.


Xenobiotica | 2009

Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells

Suyoung Choi; Bruno Sainz; Peter Corcoran; Susan L. Uprichard; Hyunyoung Jeong

The objective of this study was to characterize Huh7 cells’ baseline capacity to metabolize drugs and to investigate whether the drug metabolism was enhanced upon treatment with dimethyl sulfoxide (DMSO). The messenger RNA (mRNA) levels of major Phase I and Phase II enzymes were determined by quantitative real-time-polymerase chain reaction (RT-PCR), and activities of major drug-metabolizing enzymes were examined using probe drugs by analysing relevant metabolite production rates. The expression levels of drug-metabolizing enzymes in control Huh7 cells were generally very low, but DMSO treatment dramatically increased the mRNA levels of most drug-metabolizing enzymes as well as other liver-specific proteins. Importantly, functionality assays confirmed concomitant increases in drug-metabolizing enzyme activity. Additionally, treatment of the Huh7 cells with 3-methylcholanthrene induced cytochrome P450 (CYP) 1A1 expression. The results indicate that DMSO treatment of Huh7 cells profoundly enhances their differentiation state, thus improving the usefulness of this common cell line as an in vitro hepatocyte model.


Virology Journal | 2008

Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: Putative CD81 binding region 1 is not involved in CD81 binding

Katharina B Rothwangl; Balaji Manicassamy; Susan L. Uprichard; Lijun Rong

BackgroundHepatitis C virus (HCV) encodes two transmembrane glycoproteins E1 and E2 which form a heterodimer. E1 is believed to mediate fusion while E2 has been shown to bind cellular receptors including CD81. In this study, alanine substitutions in E2 were generated within putative CD81 binding regions to define residues critical for viral entry. The effect of each mutation was tested by challenging susceptible cell lines with mutant HCV E1E2 pseudotyped viruses generated using a lentiviral system (HCVpp). In addition to assaying infectivity, producer cell expression and HCVpp incorporation of HCV E1 and E2 proteins, CD81 binding profiles, and E1E2 association of mutants were examined.ResultsBased on these characteristics, mutants either displayed wt characteristics (high infectivity [≥ 50% of wt HCVpp], CD81 binding, E1E2 expression, association, and incorporation into viral particles and proper conformation) or segregated into 4 distinct low infectivity (≤ 50% of wt HCVpp) mutant phenotypes: (I) CD81 binding deficient (despite wt E1E2 expression, incorporation and association and proper conformation); (II) CD81 binding competent, but lack of E1 detection on the viral particle, (despite adequate E1E2 expression in producer cell lysates and proper conformation); (III) CD81 binding competent, with adequate E1E2 expression, incorporation, association, and proper E2 conformation (i.e. no defect identified to explain the reduced infectivity observed); (IV) CD81 binding deficient due to disruption of E2 mutant protein conformation.ConclusionAlthough most alanine substitutions within the putative CD81 binding region 1 (amino acids 474–492) displayed greatly reduced HCVpp infectivity, they retained soluble CD81 binding, proper E2 conformation, E1E2 association and incorporation into HCVpp suggesting that region 1 of E2 does not mediate binding to CD81. In contrast, conformationally correct E2 mutants (Y527 and W529) within the second putative CD81 binding region (amino acids 522–551) disrupted binding of E2 to CD81-GST, suggesting that region 2 is critical to CD81 binding. Likewise, all conformationally intact mutants within the third putative CD81 binding region (amino acids 612–619), except L615A, were important for E2 binding to CD81-GST. This region is highly conserved across genotypes, underlining its importance in mediating viral entry.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Transcriptional and posttranscriptional control of hepatitis B virus gene expression

Susan L. Uprichard; Stefan Wieland; Alana Althage; Francis V. Chisari

Hepatitis B virus (HBV) infects humans and certain nonhuman primates. Viral clearance and acute disease are associated with a strong, polyclonal, multispecific cytotoxic T lymphocyte response. Infiltrating T cells, as well as other activated inflammatory cells, produce cytokines that can regulate hepatocellular gene expression. Using an HBV transgenic mouse model, our laboratory has previously demonstrated that adoptive transfer of HBV-specific cytotoxic T lymphocytes or injection of IL-2 can noncytopathically inhibit HBV gene expression by a posttranscriptional IFN-γ- and/or tumor necrosis factor α-dependent mechanism. Here, we report that HBV gene expression can also be controlled at the posttranscriptional level during persistent lymphocytic choriomeningitis virus infection. In contrast, it is controlled at the transcriptional level during acute murine cytomegalovirus infection or after repetitive polyinosinic-polycytidylic acid injection. Finally, we show that transcriptional inhibition of HBV is associated with changes in liver-specific gene expression. These results elucidate pathways that regulate the viral life cycle and suggest additional approaches for the treatment of chronic HBV infection.

Collaboration


Dive into the Susan L. Uprichard's collaboration.

Top Co-Authors

Avatar

Harel Dahari

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar

Scott J. Cotler

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alan S. Perelson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruno Sainz

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naina Barretto

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Xuemei Yu

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Christopher Koh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge