Susan M. Hutson
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan M. Hutson.
The Journal of Neuroscience | 2004
Gülin Öz; Deborah A. Berkich; Pierre Gilles Henry; Y. Xu; Kathryn F. LaNoue; Susan M. Hutson; Rolf Gruetter
Glial cells are thought to supply energy for neurotransmission by increasing nonoxidative glycolysis; however, oxidative metabolism in glia may also contribute to increased brain activity. To study glial contribution to cerebral energy metabolism in the unanesthetized state, we measured neuronal and glial metabolic fluxes in the awake rat brain by using a double isotopic-labeling technique and a two-compartment mathematical model of neurotransmitter metabolism. Rats (n = 23) were infused simultaneously with 14C-bicarbonate and [1-13C]glucose for up to 1 hr. The 14C and 13C labeling of glutamate, glutamine, and aspartate was measured at five time points in tissue extracts using scintillation counting and 13C nuclear magnetic resonance of the chromatographically separated amino acids. The isotopic 13C enrichment of glutamate and glutamine was different, suggesting significant rates of glial metabolism compared with the glutamate-glutamine cycle. Modeling the 13C-labeling time courses alone and with 14C confirmed significant glial TCA cycle activity (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(V_{\mathrm{PDH}}^{(\mathrm{g})},{\sim}0.5\) \end{document} μmol · gm-1 · min-1) relative to the glutamate-glutamine cycle (VNT) (∼0.5-0.6 μmol · gm-1 · min-1). The glial TCA cycle rate was ∼30% of total TCA cycle activity. A high pyruvate carboxylase rate (VPC, ∼0.14-0.18 μmol · gm-1 · min-1) contributed to the glial TCA cycle flux. This anaplerotic rate in the awake rat brain was severalfold higher than under deep pentobarbital anesthesia, measured previously in our laboratory using the same 13C-labeling technique. We postulate that the high rate of anaplerosis in awake brain is linked to brain activity by maintaining glial glutamine concentrations during increased neurotransmission.
Journal of Clinical Investigation | 2014
Thomas Laeger; Tara M. Henagan; Diana C. Albarado; Leanne M. Redman; George A. Bray; Robert C. Noland; Heike Münzberg; Susan M. Hutson; Thomas W. Gettys; Michael W. Schwartz; Christopher D. Morrison
Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2α kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake.
Journal of Neurochemistry | 2001
Erich Lieth; Kathryn F. LaNoue; Deborah A. Berkich; Baiyang Xu; Michael Ratz; Charles P. Taylor; Susan M. Hutson
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of α‐ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the α‐amino group to glutamate. Measurements of synthesis of 14C‐glutamate and of 14C‐glutamine from H14CO3 have shown that 14C‐amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mm. The specific radioactivity of 14C‐glutamine indicated that ∼30% of glutamine was derived from 14CO2 fixation. Using gabapentin, an inhibitor of the cytosolic branched‐chain aminotransferase, synthesis of 14C‐glutamate and 14C‐glutamine from H14CO3− was inhibited by 31%. These results suggest that transamination of α‐ketoglutarate to glutamate in Müller cells is slow, the supply of branched‐chain amino acids may limit flux, and that branched‐chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H14CO3−. 14C‐metabolites in brain extracts were measured to determine net incorporation of 14CO2 and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from 14CO2 fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for ∼60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.
Nature Medicine | 2013
Martje Tönjes; Sebastian Barbus; Yoon Jung Park; Wei Wang; Magdalena Schlotter; Anders M. Lindroth; Sabrina Pleier; Alfa H.C. Bai; Daniela Karra; Rosario M. Piro; Jörg Felsberg; Adele Addington; Dieter Lemke; Irene Weibrecht; Volker Hovestadt; Claudio G. Rolli; Benito Campos; Sevin Turcan; Dominik Sturm; Hendrik Witt; Timothy A. Chan; Christel Herold-Mende; Ralf Kemkemer; Rainer König; Kathrin V. Schmidt; William Edmund Hull; Stefan M. Pfister; Manfred Jugold; Susan M. Hutson; Christoph Plass
Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the BCAT1 promoter region. BCAT1 expression was dependent on the concentration of α-ketoglutarate substrate in glioma cell lines and could be suppressed by ectopic overexpression of mutant IDH1 in immortalized human astrocytes, providing a link between IDH1 function and BCAT1 expression. Suppression of BCAT1 in glioma cell lines blocked the excretion of glutamate and led to reduced proliferation and invasiveness in vitro, as well as significant decreases in tumor growth in a glioblastoma xenograft model. These findings suggest a central role for BCAT1 in glioma pathogenesis, making BCAT1 and BCAA metabolism attractive targets for the development of targeted therapeutic approaches to treat patients with glioblastoma.
Journal of Thrombosis and Haemostasis | 2003
Andrew J. Sweatt; David C. Sane; Susan M. Hutson; Reidar Wallin
Summary. The vitamin K‐dependent protein, matrix Gla protein (MGP) is a binding protein for bone morphogenetic protein‐2 (BMP‐2). Here we present additional evidence that the Ca2+‐induced conformer of the vitamin K‐dependent Gla region in MGP is involved in BMP‐2 binding. Recombinant BMP‐2 binds to the Gla‐containing region of MGP in the presence of Ca2+. Immunohistochemistry showed that calcified lesions in the aortic wall of aging rats contained elevated concentrations of MGP that was poorly γ‐carboxylated and did not bind BMP‐2. In contrast, we were able to identify glandular structures in the mucosa of the rat nasal septum that gave bright fluorescent signals with both antigens; confocal microscopy confirmed their colocalization. These results demonstrate that the BMP‐2/MGP complex exists in vivo, consistent with a role for MGP as a BMP‐2 inhibitor. Age‐related arterial calcification may be a consequence of under‐γ‐carboxylation of MGP, allowing unopposed BMP‐2 activity.
Journal of Biological Chemistry | 2007
Nadeem Wajih; Susan M. Hutson; Reidar Wallin
γ-Carboxylation of vitamin K-dependent proteins is dependent on formation of reduced vitamin K1 (Vit.K1H2) in the endoplasmic reticulum (ER), where it works as an essential cofactor for γ-carboxylase in post-translational γ-carboxylation of vitamin K-dependent proteins. Vit.K1H2 is produced by the warfarin-sensitive enzyme vitamin K 2,3-epoxide reductase (VKOR) of the vitamin K cycle that has been shown to harbor a thioredoxin-like CXXC center involved in reduction of vitamin K1 2,3-epoxide (Vit.K>O). However, the cellular system providing electrons to the center is unknown. Here data are presented that demonstrate that reduction is linked to dithiol-dependent oxidative folding of proteins in the ER by protein disulfide isomerase (PDI). Oxidative folding of reduced RNase is shown to trigger reduction of Vit.K>O and γ-carboxylation of the synthetic γ-carboxylase peptide substrate FLEEL. In liver microsomes, reduced RNase-triggered γ-carboxylation is inhibited by the PDI inhibitor bacitracin and also by small interfering RNA silencing of PDI in HEK 293 cells. Immunoprecipitation and two-dimensional SDS-PAGE of microsomal membrane proteins demonstrate the existence of a VKOR enzyme complex where PDI and VKORC1 appear to be tightly associated subunits. We propose that the PDI subunit of the complex provides electrons for reduction of the thioredoxin-like CXXC center in VKORC1. We can conclude that the energy required for γ-carboxylation of proteins is provided by dithiol-dependent oxidative protein folding in the ER and thus is linked to de novo protein synthesis.
Journal of Biological Chemistry | 1997
Dean Cain; Susan M. Hutson; Reidar Wallin
γ-Carboxylation of vitamin K-dependent proteins requires a functional vitamin K cycle to produce the active vitamin K cofactor for the γ-carboxylase which posttranslationally modifies precursors of these proteins to contain γ-carboxyglutamic acid residues. The warfarin-sensitive enzyme vitamin K epoxide reductase (VKOR) of the cycle reduces vitamin K 2,3-epoxide to the active vitamin K hydroquinone cofactor. Because of the importance of warfarin as an anticoagulant in prophylactic medicine and as a poison in rodent pest control, numerous attempts have been made to understand the molecular mechanism underlying warfarin-sensitive vitamin K 2,3-epoxide reduction. In search for protein components that could be involved in this reaction we designed an in vitro γ-carboxylation test system where the warfarin-sensitive VKOR produces the cofactor for the γ-carboxylase. Dissection of this system by chromatographic techniques has identified a member(s) of the glutathione S-transferase gene family as one component of the VKOR enzyme complex in the endoplasmic reticulum membrane. The affinity-purified glutathioneS-transferase(s) was sensitive to warfarin but lost its warfarin sensitivity and glutathione S-transferase activity upon association with lipids in the presence of Mn2+ or Ca2+. In the γ-carboxylation test system, loss of warfarin-sensitive glutathione S-transferase activity coincided with formation of the VKOR enzyme complex. It is proposed that formation of VKOR in the endoplasmic reticulum membrane resembles formation of the lipoxygenase enzyme complex where the glutathioneS-transferase-related FLAP protein binds cytosolic lipoxygenase to form a membrane enzyme complex.
Journal of Neuroscience Research | 2007
Deborah A. Berkich; M.S. Ola; J. Cole; Andrew J. Sweatt; Susan M. Hutson; Kathryn F. LaNoue
In this study, cellular distribution and activity of glutamate and γ‐aminobutyric acid (GABA) transport as well as oxoglutarate transport across brain mitochondrial membranes were investigated. A goal was to establish cell‐type‐specific expression of key transporters and enzymes involved in neurotransmitter metabolism in order to estimate neurotransmitter and metabolite traffic between neurons and astrocytes. Two methods were used to isolate brain mitochondria. One method excludes synaptosomes and the organelles may therefore be enriched in astrocytic mitochondria. The other method isolates mitochondria derived from all regions of the brain. Immunological and enzymatic methods were used to measure enzymes and carriers in the different preparations, in addition to studying transport kinetics. Immunohistochemistry was also employed using brain slices to confirm cell type specificity of enzymes and carriers. The data suggest that the aspartate/glutamate carriers (AGC) are expressed predominantly in neurons, not astrocytes, and that one of two glutamate/hydroxyl carriers is expressed predominantly in astrocytes. The GABA carrier and the oxoglutarate carrier appear to be equally distributed in astrocytes and neurons. As expected, pyruvate carboxylase and branched‐chain aminotransferase were predominantly astrocytic. Insofar as the aspartate/glutamate exchange carriers are required for the malate/aspartate shuttle and for reoxidation of cytosolic NADH, the data suggest a compartmentation of glucose metabolism in which astrocytes catalyze glycolytic conversion of glucose to lactate, whereas neurons are capable of oxidizing both lactate and glucose to CO2 + H2O.
The FASEB Journal | 2001
Reidar Wallin; Susan M. Hutson; Dean Cain; Andrew J. Sweatt; David C. Sane
Warfarin targets vitamin K 2,3‐epoxide reductase (VKOR), the enzyme that produces reduced vitamin K, a required cofactor for γ‐carboxylation of vitamin K‐dependent proteins. To identify VKOR, we used 4′‐azido‐warfarin‐3H‐alcohol as an affinity label. When added to a partially purified preparation of VKOR, two proteins were identified by mass spectrometry as calumenin and cytochrome B5. Rat calumenin was cloned and sequenced and the recombinant protein was produced. When added to an in vitro test system, the 47 kDa recombinant protein was found to inhibit VKOR activity and to protect the enzyme from warfarin inhibition. Calumenin was also shown to inhibit the overall activity of the complete vitamin K‐dependent γ‐carboxylation system. The results were repeated in COS‐1 cells overexpressing recombinant calumenin. By comparing calumenin mRNA levels in various tissues from normal rats and warfarin‐resistant rats, only the livers from resistant rats were different from normal rats by showing increased levels. Partially purified VKOR from resistant and normal rat livers showed no differences in Km‐values, specific activity, and sensitivity to warfarin. A novel model for genetic warfarin resistance in the rat is proposed, whereby the concentration of calumenin in liver determines resistance.
American Journal of Physiology-endocrinology and Metabolism | 2008
Stephane Walrand; Kevin R. Short; Maureen L. Bigelow; Andrew J. Sweatt; Susan M. Hutson; K. Sreekumaran Nair
Decline in muscle mass, protein synthesis, and mitochondrial function occurs with age, and amino acids are reported to enhance both muscle protein synthesis and mitochondrial function. It is unclear whether increasing dietary protein intake corrects postabsorptive muscle changes in aging. We determined whether a 10-day diet of high [HP; 3.0 g protein x kg fat-free mass (FFM)(-1) x day(-1)] vs. usual protein intake (UP; 1.5 g protein x kg FFM(-1) x day(-1)) favorably affects mitochondrial function, protein metabolism, and nitrogen balance or adversely affects insulin sensitivity and glomerular filtration rate (GFR) in 10 healthy younger (24+/-1 yr) and 9 older (70+/-2 yr) participants in a randomized crossover study. Net daily nitrogen balance increased equally in young and older participants, but postabsorptive catabolic state also increased, as indicated by higher whole body protein turnover and leucine oxidation with no change in protein synthesis. Maximal muscle mitochondrial ATP production rate was lower in older people, with no change occurring in diet. GFR was lower in older people, and response to HP was significantly different between the two groups, with a significant increase occurring only in younger people, thus widening the differences in GFR between the young and older participants. In conclusion, a short-term high-protein diet increased net daily nitrogen balance but increased the postabsorptive use of protein as a fuel. HP did not enhance protein synthesis or muscle mitochondrial function in either young or older participants. Additionally, widening differences in GFR between young and older patients is a potential cause of concern in using HP diet in older people.