Susan T. Hingley
Philadelphia College of Osteopathic Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan T. Hingley.
Journal of Virology | 2006
Zhaozhu Qiu; Susan T. Hingley; Graham Simmons; Christopher Yu; Jayasri Das Sarma; Paul Bates; Susan R. Weiss
ABSTRACT Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.
Journal of Virology | 2001
Sonia Navas; Su-Hun Seo; Ming Ming Chua; Jayasri Das Sarma; Ehud Lavi; Susan T. Hingley; Susan R. Weiss
ABSTRACT Recombinant mouse hepatitis viruses (MHV) differing only in the spike gene, containing A59, MHV-4, and MHV-2 spike genes in the background of the A59 genome, were compared for their ability to replicate in the liver and induce hepatitis in weanling C57BL/6 mice infected with 500 PFU of each virus by intrahepatic injection. Penn98-1, expressing the MHV-2 spike gene, replicated to high titer in the liver, similar to MHV-2, and induced severe hepatitis with extensive hepatocellular necrosis. SA59R13, expressing the A59 spike gene, replicated to a somewhat lower titer and induced moderate to severe hepatitis with zonal necrosis, similar to MHV-A59. S4R21, expressing the MHV-4 spike gene, replicated to a minimal extent and induced few if any pathological changes, similar to MHV-4. Thus, the extent of replication and the degree of hepatitis in the liver induced by these recombinant viruses were determined largely by the spike protein.
Virology | 1997
Isabelle Leparc-Goffart; Susan T. Hingley; Ming Ming Chua; Xinhe Jiang; Ehud Lavi; Susan R. Weiss
Abstract C12, an attenuated, fusion delayed, very weakly hepatotropic mutant of mouse hepatitis virus strain A59 (MHV-A59) has been further characterized. We have previously shown that C12 has two amino acid substitutions relative to wild type virus in the spike protein, Q159L (within a region of S1 shown to bind to viral receptor in anin vitroassay) and H716D (in the proteolytic cleavage recognition site). We have sequenced the rest of the 31-kb genome of C12 and compared it to wild type virus. Only three additional amino acids substitutions were found, all encoded within the replicase gene. Analysis of C12in vivoin C57Bl/6 mice has shown that despite the fact that this virus replicates in the brain to titers at least as high as wild type and causes acute encephalitis similar to wild type, this virus causes a minimal level of demyelination and only at very high levels of virus inoculation. Thus acute encephalitis is not sufficient for the induction of demyelination by MHV-A59. Analysis of mutants isolated at earlier times from the same persistently infected glial cell culture as C12, as well as mutants isolated from a second independent culture of persistently infected glial cells, suggests that both the weakly demyelinating and the weakly hepatotropic phenotypes of C12 are associated with the Q159L amino acid substitution.
The Journal of Neuroscience | 2009
Jayasri Das Sarma; Lawrence Kenyon; Susan T. Hingley; Kenneth S. Shindler
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Recent studies have demonstrated that significant axonal injury also occurs in MS patients and correlates with neurological dysfunction, but it is not known whether this neuronal damage is a primary disease process, or occurs only secondary to demyelination. In the current studies, neurotropic strains of mouse hepatitis virus (MHV) that induce meningitis, encephalitis, and demyelination in the CNS, an animal model of MS, were used to evaluate mechanisms of axonal injury. The pathogenic properties of genetically engineered isogenic spike protein recombinant demyelinating and nondemyelinating strains of MHV were compared. Studies demonstrate that a demyelinating strain of MHV causes concomitant axonal loss and macrophage-mediated demyelination. The mechanism of axonal loss and demyelination in MHV infection is dependent on successful transport of virus from gray matter to white matter using the MHV host attachment spike glycoprotein. Our data show that axonal loss and demyelination can be independent direct viral cytopathic events, and suggest that similar direct axonal damage may occur in MS. These results have important implications for the design of neuroprotective strategies for CNS demyelinating disease, and our model identifies the spike protein as a therapeutic target to prevent axonal transport of neurotropic viruses.
Journal of Virology | 2008
Kenneth S. Shindler; Lawrence Kenyon; Mahasweta Dutt; Susan T. Hingley; Jayasri Das Sarma
ABSTRACT Optic neuritis (ON), an inflammatory demyelinating optic nerve disease, occurs in multiple sclerosis (MS). Pathological mechanisms and potential treatments for ON have been studied via experimental autoimmune MS models. However, evidence suggests that virus-induced inflammation is a likely etiology triggering MS and ON; experimental virus-induced ON models are therefore required. We demonstrate that MHV-A59, a mouse hepatitis virus (MHV) strain that causes brain and spinal cord inflammation and demyelination, induces ON by promoting mixed inflammatory cell infiltration. In contrast, MHV-2, a nondemyelinating MHV strain, does not induce ON. Results reveal a reproducible virus-induced ON model important for the evaluation of novel therapies.
Journal of Virology | 2005
Sonia Navas-Martin; Susan T. Hingley; Susan R. Weiss
ABSTRACT Murine coronavirus A59 strain causes mild to moderate hepatitis in mice. We have previously shown that mutants of A59, unable to induce hepatitis, may be selected by persistent infection of primary glial cells in vitro. These in vitro isolated mutants encoded two amino acids substitutions in the spike (S) gene: Q159L lies in the putative receptor binding domain of S, and H716D, within the cleavage signal of S. Here, we show that hepatotropic revertant variants may be selected from these in vitro isolated mutants (Q159L-H716D) by multiple passages in the mouse liver. One of these mutants, hr2, was chosen for more in-depth study based on a more hepatovirulent phenotype. The S gene of hr2 (Q159L-R654H-H716D-E1035D) differed from the in vitro isolates (Q159L-H716D) in only 2 amino acids (R654H and E1035D). Using targeted RNA recombination, we have constructed isogenic recombinant MHV-A59 viruses differing only in these specific amino acids in S (Q159L-R654H-H716D-E1035D). We demonstrate that specific amino acid substitutions within the spike gene of the hr2 isolate determine the ability of the virus to cause lethal hepatitis and replicate to significantly higher titers in the liver compared to wild-type A59. Our results provide compelling evidence of the ability of coronaviruses to rapidly evolve in vivo to highly virulent phenotypes by functional compensation of a detrimental amino acid substitution in the receptor binding domain of the spike glycoprotein.
Journal of NeuroVirology | 2001
Jayasri Das Sarma; Li Fu; Susan T. Hingley; Michael M. C. Lai; Ehud Lavi
Coronaviruses, mouse hepatitis virus (MHV) strains, exhibit various degrees of neurotropism and hepatotropism following intracerebral (IC) infection of 4-week-old C57Bl/6 mice. Whereas MHV-A59 produces acute meningitis, encephalitis, hepatitis, and chronic demyelination, a closely related strain, MHV-2, produces only acute meningitis and hepatitis. We previously reported that the spike glycoprotein gene of MHV contains determinants of demyelination and hepatitis. To further investigate the site of demyelination and hepatitis determinants within the S gene, we sequenced the S gene of several nonde-myelinating recombinant viruses. We found that three encephalitis-positive, demyelination-negative, hepatitis-negative recombinant viruses have an MHV-A59-derived S gene, which contains three identical point mutations (I375M, L652I, and T1087N). One or more of the sites of these mutations in the MHV-A59 genome are likely to contribute to demyelination and hepatitis.
Journal of NeuroVirology | 2002
Susan T. Hingley; Isabelle Leparc-Goffart; Su-Hun Seo; Jean C. Tsai; Susan R. Weiss
The cleavage and fusion properties of recombinant murine hepatitis viruses (MHV) were examined to assess the role of the cleavage signal in determining the extent of S protein cleavage, and the correlation between cleavage and induction of cell-to-cell fusion. Targeted recombination was used to introduce amino acid substitutions into the cleavage signal of the fusion glycoprotein (spike or S protein) of MHV strain A59. The recombinants were then used to address the question of the importance of S protein cleavage and viral-mediated cell-to-cell fusion on pathogenicity. Our data indicate that cleavage of spike is not solely determined by the amino acid sequence at the cleavage site, but may also depend on sequences removed from the cleavage site. In addition, efficient cell-to-cell fusion is not necessary for virulence.
Advances in Experimental Medicine and Biology | 2001
Sonia Navas; Su-Hun Seo; Ming Ming Chua; Jayasri Das Sarma; Susan T. Hingley; Ehud Lavi; Susan R. Weiss
Various strains of the murine Coronavirus, mouse hepatitis virus (MHV), have been shown to display different organ tropism and pathogenesis, including enteritis, encephalitis, demyelination and hepatitis in C57BL/6 mice (Perlman et al., 1998). Infection of mice by MHV is an experimental model of chronic demyelinating diseases, such as multiple sclerosis (Buchmeier et al., 1999). Furthermore, some MHV strains can be considered as a model for studying acute and chronic hepatitis of viral etiology (Ding et al., 1997). It is well established that the severity of MHV-induced hepatitis is dependent on virus strain. MHV-A59 induces moderate to severe hepatitis, whereas MHV-4 (an isolate of MHV-JHM strain) produces none to minimal hepatitis. MHV-2 is a highly hepatotropic strain that causes severe hepatitis. However, the viral determinants which explain the differences in pathogenicity are poorly understood.
Advances in Experimental Medicine and Biology | 1995
Susan T. Hingley; James L. Gombold; Ehud Lavi; Susan R. Weiss
MHV-A59 causes acute meningoencephalitis and hepatitis in susceptible mice, and a persistent productive, but nonlytic, infection of cultured glial cells. We have shown previously that viruses isolated from persistently infected glial cell cultures have a fusion-defective phenotype and were impaired in their abilities to cause hepatitis compared to wild-type MHV-A59. Two mutants chosen for detailed study, B11 and C12, display two distinct hepatitis phenotypes. The ability of B11 to replicate in the liver was dependent on infectious dose and route of inoculation, while C12 consistently displayed decreased liver titers regardless of dose and route of inoculation. Sequence analysis of wild-type, mutant and revertant S proteins indicates that 1) a mutation in the N terminal subunit of S, resulting in a glutamine to leucine amino acid substitution (Q159L), may affect ability to cause hepatitis and 2) a cleavage site mutation (H716D) which determines fusogenicity is not responsible for the altered hepatitis phenotype. Sequence analysis indicated that hepatitis-producing revertants did not revert at mutation Q159L, although it is possible that a mutation in the heptad repeat domain of S2 may compensate for the mutation in S1. Since B11, C12 and a nonattenuated fusion mutant (B12) have identical S protein sequences, there must be additional mutations outside of S which influence both virulence and ability to replicate in the liver.