Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan T. Howard is active.

Publication


Featured researches published by Susan T. Howard.


Molecular Microbiology | 2004

IS6110 functions as a mobile, monocyte‐activated promoter in Mycobacterium tuberculosis

Hassan Safi; Peter F. Barnes; David L. Lakey; Homayoun Shams; Buka Samten; Ramakrishna Vankayalapati; Susan T. Howard

The mobile insertion sequence, IS6110, is an important marker in tracking of Mycobacterium tuberculosis strains. Here, we demonstrate that IS6110 can upregulate downstream genes through an outward‐directed promoter in its 3′ end, thus adding to the significance of this element. Promoter activity was orientation dependent and was localized within a 110 bp fragment adjacent to the right terminal inverted repeat. Transcripts from this promoter, named OP6110, begin ≈ 85 bp upstream of the 3′ end of IS6110. Use of green fluorescent protein (GFP) expression constructs showed that OP6110 was upregulated in M. tuberculosis during growth in human monocytes and in late growth phases in broth. Analysis of natural insertion sites in M. tuberculosis showed that IS6110 upregulated expression of several downstream genes during growth in human monocytes, including Rv2280 in H37Rv and the PE‐PGRS gene, Rv1468c, in the clinical strain 210, which is a member of the Beijing family. Transcription between IS6110 and downstream genes was confirmed by reverse transcription polymerase chain reaction. The ability to activate genes during infection suggests that IS6110 has the potential to influence growth characteristics of different strains, and indicates another mechanism by which IS6110 can impact M. tuberculosis evolution.


Molecular Microbiology | 2004

The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo

Shiping Wu; Susan T. Howard; David L. Lakey; André Kipnis; Buka Samten; Hassan Safi; Veronica Gruppo; Benjamin Wizel; Homayoun Shams; Randall J. Basaraba; Ian M. Orme; Peter F. Barnes

The ability of Mycobacterium tuberculosis to grow in macrophages is central to its pathogenicity. We found previously that the widespread 210 strain of M. tuberculosis grew more rapidly than other strains in human macrophages. Because principal sigma factors influence virulence in some bacteria, we analysed mRNA expression of the principal sigma factor, sigA, in M. tuberculosis isolates during growth in human macrophages. Isolates of the 210 strain had higher sigA mRNA levels and higher intracellular growth rates, compared with other clinical strains and the laboratory strain H37Rv. SigA was also upregulated in the 210 isolate TB294 during growth in macrophages, compared with growth in broth. In contrast, H37Rv sigA mRNA levels did not change under these conditions. Overexpression of sigA enhanced growth of recombinant M. tuberculosis in macrophages and in lungs of mice after aerosol infection, whereas recombinant strains expressing antisense transcripts to sigA showed decreased growth in both models. In the presence of superoxide, sense sigA transformants showed greater resistance than vector controls, and the antisense sigA transformant did not grow. We conclude that M. tuberculosis sigA modulates the expression of genes that contribute to virulence, enhancing growth in human macrophages and during the early phases of pulmonary infection in vivo. This effect may be mediated in part by increased resistance to reactive oxygen intermediates.


Journal of Clinical Microbiology | 2015

Utility of Sequencing the erm(41) Gene in Isolates of Mycobacterium abscessus subsp. abscessus with Low and Intermediate Clarithromycin MICs

Barbara A. Brown-Elliott; Sruthi Vasireddy; Ravikiran Vasireddy; Elena Iakhiaeva; Susan T. Howard; Kevin A. Nash; Nicholas Parodi; Anita Strong; Martha Gee; Terry Smith; Richard J. Wallace

ABSTRACT The erm(41) gene confers inducible macrolide resistance in Mycobacterium abscessus subsp. abscessus, calling into question the usefulness of macrolides for treating M. abscessus subsp. abscessus infections. With an extended incubation (14 days), isolates with MICs of ≥8 μg/ml are considered macrolide resistant by current CLSI guidelines. Our goals were to determine the incidence of macrolide susceptibility in U.S. isolates, the validity of currently accepted MIC breakpoints, and the erm(41) sequences associated with susceptibility. Of 349 isolates (excluding those with 23S rRNA gene mutations), 85 (24%) had clarithromycin MICs of ≤8 μg/ml. Sequencing of the erm(41) genes from these isolates, as well as from isolates with MICs of ≥16 μg/ml, including ATCC 19977T, revealed 10 sequevars. The sequence in ATCC 19977T was designated sequevar (type) 1; most macrolide-resistant isolates were of this type. Seven sequevars contained isolates with MICs of >16 μg/ml. The T28C substitution in erm(41), previously associated with macrolide susceptibility, was identified in 62 isolates (18%) comprising three sequevars, with MICs of ≤2 (80%), 4 (10%), and 8 (10%) μg/ml. No other nucleotide substitution was associated with macrolide susceptibility. We recommend that clarithromycin susceptibility breakpoints for M. abscessus subsp. abscessus be changed from ≤2 to ≤4 μg/ml and that isolates with an MIC of 8 μg/ml have repeat MIC testing or erm sequencing performed. Our studies suggest that macrolides are useful for treating approximately 20% of U.S. isolates of M. abscessus subsp. abscessus. Sequencing of the erm gene of M. abscessus subsp. abscessus will predict inducible macrolide susceptibility.


Journal of Bacteriology | 2013

MprAB Regulates the espA Operon in Mycobacterium tuberculosis and Modulates ESX-1 Function and Host Cytokine Response

Xiuhua Pang; Buka Samten; Guangxiang Cao; Xisheng Wang; Amy Tvinnereim; Xiu Lan Chen; Susan T. Howard

The ESX-1 secretion system exports the immunomodulatory protein ESAT-6 and other proteins important in the pathogenesis of Mycobacterium tuberculosis. Components and substrates of ESX-1 are encoded at several loci, but the regulation of the encoding genes is only partially understood. In this study, we investigated the role of the MprAB two-component system in the regulation of ESX-1 activity. We determined that MprAB directly regulates the espA gene cluster, a locus necessary for ESX-1 function. Transcript mapping determined that the five genes in the cluster form an operon with two transcriptional start points, and several MprA binding sites were detected in the espA promoter. Expression analyses and promoter constructs indicated that MprAB represses the espA operon. However, the MprAB mutant Rv-D981 secreted lower levels of EspA, ESAT-6, and the ESX-1 substrate EspB than control strains. Secretion of CFP10, which is normally cosecreted with ESAT-6, was similar in Rv-D981 and control strains, further demonstrating aberrant ESX-1 activity in the mutant. ESAT-6 induces proinflammatory cytokines, and macrophages infected with Rv-D981 elicited lower levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), consistent with the reduced levels of ESAT-6. These findings indicate that MprAB modulates ESX-1 function and reveal a new role for MprAB in host-pathogen interactions.


Microbes and Infection | 2000

The rapidly growing mycobacteria: saprophytes and parasites.

Susan T. Howard; Thomas F. Byrd

Rapidly growing mycobacteria are widespread saprophytes, but approximately one-third of identified species are also opportunistic pathogens in humans and animals, associated with skin, soft tissue, bone, and pulmonary infections as well as disseminated disease. Clinical and experimental evidence indicates a major role for the cell-mediated immune response in the pathogenesis of infection.


Journal of Immunology | 2005

Cyclic AMP Response Element-Binding Protein Positively Regulates Production of IFN-γ by T Cells in Response to a Microbial Pathogen

Buka Samten; Susan T. Howard; Steven E. Weis; Shiping Wu; Homayoun Shams; James C. Townsend; Hassan Safi; Peter F. Barnes

IFN-γ is essential for resistance to many intracellular pathogens, including Mycobacterium tuberculosis. Transcription of the IFN-γ gene in activated T cells is controlled by the proximal promoter element (−73 to −48 bp). CREB binds to the IFN-γ proximal promoter, and binding is enhanced by phosphorylation of CREB. Studies in human T cell lines and in transgenic mice have yielded conflicting results about whether CREB is a positive or a negative regulator of IFN-γ transcription. To determine the role of CREB in mediating IFN-γ production in response to a microbial pathogen, we evaluated the peripheral blood T cell response to M. tuberculosis in healthy tuberculin reactors. EMSAs, chromatin immunoprecipitation, and Western blotting demonstrated that stimulation of PBMC with M. tuberculosis induced phosphorylation and enhanced binding of CREB to the IFN-γ proximal promoter. Neutralization of CREB with intracellular Abs or down-regulation of CREB levels with small interfering RNA decreased M. tuberculosis-induced production of IFN-γ and IFN-γ mRNA expression. In addition, M. tuberculosis-stimulated T cells from tuberculosis patients, who have ineffective immunity, showed diminished IFN-γ production, reduced amounts of CREB binding to the IFN-γ proximal promoter, and absence of phosphorylated CREB. These findings demonstrate that CREB positively regulates IFN-γ production by human T cells that respond to M. tuberculosis.


Microbiology | 2009

Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth.

Shiping Wu; Peter F. Barnes; Buka Samten; Xiuhua Pang; Sébastien Rodrigue; Saleena Ghanny; Patricia Soteropoulos; Luc Gaudreau; Susan T. Howard

There is growing evidence that strains of Mycobacterium tuberculosis differ in pathogenicity and transmissibility, but little is understood about the contributory factors. We have previously shown that increased expression of the principal sigma factor, SigA, mediates the capacity of M. tuberculosis strain 210 to grow more rapidly in human monocytes, compared with other strains. Strain 210 is part of the widespread W-Beijing family of M. tuberculosis strains and includes clinical isolate TB294. To identify genes that respond to changes in SigA levels and that might enhance intracellular growth, we examined RNA and protein expression patterns in TB294-pSigA, a recombinant strain of TB294 that overexpresses sigA from a multicopy plasmid. Lysates from broth-grown cultures of TB294-pSigA contained high levels of Eis, a protein known to modulate host-pathogen interactions. DNA microarray analysis indicated that the eis gene, Rv2416c, was expressed at levels in TB294-pSigA 40-fold higher than in the vector control strain TB294-pCV, during growth in the human monocyte cell line MonoMac6. Other genes with elevated expression in TB294-pSigA showed much smaller changes from TB294-pCV, and the majority of genes with expression differences between the two strains had reduced expression in TB294-pSigA, including an unexpected number of genes associated with the DNA-damage response. Real-time PCR analyses confirmed that eis was expressed at very high levels in TB294-pSigA in monocytes as well as in broth culture, and further revealed that, like sigA, eis was also more highly expressed in wild-type TB294 than in the laboratory strain H37Rv, during growth in monocytes. These findings suggested an association between increased SigA levels and eis activation, and results of chromatin immunoprecipitation confirmed that SigA binds the eis promoter in live TB294 cells. Deletion of eis reduced growth of TB294 in monocytes, and complementation of eis reversed this effect. We conclude that SigA regulates eis, that there is a direct correlation between upregulation of SigA and high expression levels of eis, and that eis contributes to the enhanced capacity of a clinical isolate of M. tuberculosis strain 210 to grow in monocytes.


Journal of Bacteriology | 2007

Regulation of the α-Crystallin Gene acr2 by the MprAB Two-Component System of Mycobacterium tuberculosis

Xiuhua Pang; Susan T. Howard

Coordinated regulation of molecular chaperones is an important feature of the bacterial stress response. The small molecular chaperone gene acr2 of Mycobacterium tuberculosis is activated by exposure to several stresses, including heat and the detergent sodium dodecyl sulfate (SDS). In this study, we show that acr2 is directly regulated by the MprAB two-component system, and that MprAB has both positive and negative effects on acr2 expression. mRNA analyses showed that acr2 expression levels were lower under SDS stress and control conditions but higher under heat shock in an mprAB deletion mutant than they were in the parental strain. Parental expression patterns were restored in an mprAB-complemented strain. Western blotting using an anti-Acr2 antibody showed that Acr2 protein synthesis correlated with mRNA levels. Primer extension identified one transcriptional start point (TSP) for acr2 in all three strains under control and stress conditions. Electrophoresis mobility shift assays revealed multiple MprA binding sites in the acr2 promoter, including one downstream and three upstream of the acr2 TSP, with one overlapping the binding sites predicted for SigE, SigH, and HspR. DNA footprinting confirmed that MprA protected large sections of the acr2 promoter region. Expression of several housekeeping genes under SDS stress also was evaluated, revealing the upregulation of large molecular chaperone genes and, unexpectedly, sigA, with slightly lower sigA mRNA levels detected in the mprAB deletion mutant than in the wild type. In contrast to Acr2, SigA protein synthesis did not correlate with mRNA expression. Overall, the data indicated that MprA has complex interactions with the acr2 promoter and indirect effects on major housekeeping genes.


Microbiology | 2002

A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element

Susan T. Howard; Thomas F. Byrd; C. Richard Lyons

A polymorphic region was discovered in the genetically uncharacterized opportunistic pathogen Mycobacterium abscessus. The region contains a novel 1.7 kb insertion sequence (IS) named ISMab1. ISMab1 contains two complete ORFs and one partial ORF located in segments with over 80% nucleotide identity to Mycobacterium avium IS1601 and IS999 and to previously unreported IS-like elements from Mycobacterium smegmatis. The marked similarity within this family of elements is supportive of horizontal transfer between environmental mycobacterial species. In clinical isolates, ISMab1 was either present as a single copy or absent. The polymorphic region containing ISMab1 was identified by genomic subtraction between a parental strain and phenotypic variant. The variant has a 14.2 kb genomic deletion and this is flanked in the parental strain by complex arrays of inverted and direct repeats. Clinical isolates of M. abscessus were probed for the deletion and flanking sequences and two were found to be missing more than 20 kb. No regional deletions were found in the type strain, ATCC 19977. Although M. abscessus is a rapidly growing species, comparative sequence analysis of 23 kb from the polymorphic region showed that most local ORFs have greater amino acid identity to proteins encoded by genes from the slowly growing mycobacteria, M. avium and Mycobacterium tuberculosis, than to the rapid-grower M. smegmatis. Several ORFs also have strong similarity to Pseudomonas aeruginosa genes with a potential role in beta-oxidation.


Tuberculosis | 2013

Recent progress towards understanding genetic variation in the Mycobacterium abscessus complex

Susan T. Howard

Mycobacterium abscessus is an emerging cause of respiratory disease and soft tissue infections. Whole genome sequencing and other molecular approaches are enhancing our understanding of outbreaks, antibiotic resistance mechanisms, and virulence properties, and of the phylogeny of the M. abscessus complex. Infection models are providing further insights into factors such as colony phenotype that impact host-pathogen interactions. This paper reviews recent developments in our understanding of genetic variation in M. abscessus and the potential relevance for disease and treatment.

Collaboration


Dive into the Susan T. Howard's collaboration.

Top Co-Authors

Avatar

Buka Samten

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Peter F. Barnes

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Xiuhua Pang

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Homayoun Shams

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Ravikiran Vasireddy

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Richard J. Wallace

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Shiping Wu

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Thomas F. Byrd

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuhua Pang

University of Texas Health Science Center at Tyler

View shared research outputs
Researchain Logo
Decentralizing Knowledge