Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas F. Byrd is active.

Publication


Featured researches published by Thomas F. Byrd.


Journal of Clinical Investigation | 1993

Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma.

Thomas F. Byrd; Marcus A. Horwitz

We have investigated the regulation of key human iron binding proteins in mononuclear phagocytes by IFN gamma and iron transferrin. In a previous study, we demonstrated that IFN gamma downregulates the expression on human monocytes of transferrin receptors, the major source of iron for the cell. In the present study, we show that IFN gamma also downregulates the intracellular concentration of ferritin, the major iron storage protein in the cell. By radioimmunoassay, the mean ferritin content of nonactivated monocytes was 361 +/- 107 fg/monocyte (mean +/- SEM) whereas the mean ferritin content of IFN gamma-activated monocytes was 64 +/- 13 fg/monocyte, an 82% reduction with activation (P < 0.01, t test). Consistent with its downregulating effect on these iron proteins, IFN gamma treatment also results in decreased iron incorporation. IFN gamma-activated monocytes incorporated 33% less iron from 59Fe-transferrin than nonactivated monocytes (P < 0.05, t test). Gel filtration chromatography revealed that incorporated iron is located primarily in ferritin in both nonactivated and IFN gamma-activated monocytes. Ferritin in IFN gamma-activated monocytes is saturated with approximately three times as much 59Fe as ferritin in nonactivated monocytes. We have also explored the effect of iron transferrin on transferrin receptor expression and intracellular ferritin content in human monocytes. We have found that iron transferrin markedly upregulates both transferrin receptor expression and intracellular ferritin content in both nonactivated (2.3- and 1.3-fold, respectively) and IFN gamma-activated (3.4- and 2.9-fold, respectively) monocytes. This study demonstrates that transferrin receptor expression and intracellular ferritin content in human monocytes is unidirectionally and coordinately upregulated by iron transferrin and unidirectionally and coordinately downregulated by IFN gamma.


Journal of Clinical Investigation | 1997

Tumor necrosis factor alpha (TNFalpha) promotes growth of virulent Mycobacterium tuberculosis in human monocytes iron-mediated growth suppression is correlated with decreased release of TNFalpha from iron-treated infected monocytes.

Thomas F. Byrd

The human immune response to Mycobacterium tuberculosis is not well characterized. To better understand the cellular immune response to tuberculosis, a human mononuclear phagocyte culture system using a low-infecting inoculum of M. tuberculosis to mimic in vivo conditions was developed. Using this system, monocytes treated with IFNgamma/TNFalpha/ calcitriol (CytD) were permissive for the growth of virulent M. tuberculosis. In the presence of iron, however, these monocytes suppressed the growth of M. tuberculosis. The enhanced permissiveness of CytD-preincubated monocytes was found to be due to TNFalpha, however, the ability of iron to suppress M. tuberculosis growth also required preincubation with TNFalpha. Iron-mediated growth suppression was correlated with selective suppression of TNFalpha release from infected monocytes. In addition, removal of TNFalpha from CytD-treated monocytes 2 d after infection mimicked the suppressive effect of iron, suggesting that iron may also be decreasing monocyte sensitivity to exogenously added TNFalpha. In the absence of iron, permissive, CytD-treated monocytes formed large infected cellular aggregates. With iron treatment, aggregation was suppressed, suggesting that the iron-suppressive effect on M. tuberculosis growth may be related to suppression of monocyte aggregation and diminished cell-to-cell spread of M. tuberculosis. The results of this study indicate that TNFalpha preincubation is required for human monocytes to exert an iron-mediated suppressive effect on M. tuberculosis growth. In the absence of iron, however, the continued presence of TNFalpha has a growth-promoting effect on M. tuberculosis in human monocytes. Iron may be an important early modulator of M. tuberculosis growth via its effects on TNFalpha.


Journal of Immunology | 2009

Mycobacterium abscessus Glycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-myo-Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR2

Elizabeth Rhoades; Angela S. Archambault; Rebecca Greendyke; Fong-Fu Hsu; Cassandra Streeter; Thomas F. Byrd

Mycobacterium abscessus causes disease in patients with structural abnormalities of the lung, and it is an emerging pathogen in patients with cystic fibrosis. Colonization of the airways by nontuberculous mycobacteria is a harbinger of invasive lung disease. Colonization is facilitated by biofilm formation, with M. abscessus glycopeptidolipids playing an important role. M. abscessus can transition between a noninvasive, biofilm-forming, smooth colony phenotype that expresses glycopeptidolipid, and an invasive rough colony phenotype that expresses minimal amounts of glycopeptidolipid and is unable to form biofilms. The ability of this pathogen to transition between these phenotypes may have particular relevance to lung infection in cystic fibrosis patients since the altered pulmonary physiology of these patients makes them particularly susceptible to colonization by biofilm-forming bacteria. In this study we demonstrate that rough variants of M. abscessus stimulate the human macrophage innate immune response through TLR2, while smooth variants do not. Temperature-dependent loss or physical removal of glycopeptidolipid from the cell wall of one of the smooth variants leads to TLR2 stimulation. This response is stimulated in part through phosphatidyl-myo-inositol mannosides that are present in the cell wall of both rough and smooth variants. Mannose-binding lectins bind to rough variants, but lectin binding to an isogenic smooth variant is markedly reduced. This suggests that glycopeptidolipid in the outermost portion of the M. abscessus cell wall masks underlying cell wall lipids involved in stimulating the innate immune response, thereby facilitating colonization. Conversely spontaneous “unmasking” of cell wall lipids may promote airway inflammation.


Antimicrobial Agents and Chemotherapy | 2008

Differential Antibiotic Susceptibility of Mycobacterium abscessus Variants in Biofilms and Macrophages Compared to That of Planktonic Bacteria

Rebecca Greendyke; Thomas F. Byrd

ABSTRACT Mycobacterium abscessus causes refractory pulmonary infections requiring surgery for cure. It exists as a smooth biofilm-forming phenotype which is noninvasive and a rough, non-biofilm-forming phenotype which can invade macrophages and cause persistent pulmonary infection in mice. We have postulated that the dissociation of the smooth phenotype to the rough phenotype may lead to invasive lung disease following initial colonization of the airways. Amikacin, cefoxitin, and clarithromycin are standard therapies for this infection. We determined the MICs of these antibiotics against this pathogen in biofilms and macrophages, the niches that it likely occupies in the human host. Our results demonstrate that even though the MICs indicate sensitivity to these antibiotics, the minimal bactericidal concentrations for amikacin and clarithromycin were substantially higher and were out of the range of the concentrations achievable in serum. Cefoxitin demonstrated only bacteriostatic activity. In addition, although amikacin had modest activity against M. abscessus in biofilms, clarithromycin demonstrated only minimal activity at the highest concentrations tested. Our results indicate that M. abscessus in mature biofilms is in a stationary-phase state and that clarithromycin is relatively inactive against stationary-phase M. abscessus. In human macrophages, all three antibiotics were only bacteriostatic for M. abscessus variants at 10 times their MICs. These results suggest why treatment failure with antibiotics alone is common in the clinical setting of M. abscessus pulmonary infection. Determination of the efficacies of new antibiotics should include an assessment of their activities against the smooth and rough M. abscessus morphotypes in biofilms and macrophages.


Microbes and Infection | 2000

The rapidly growing mycobacteria: saprophytes and parasites.

Susan T. Howard; Thomas F. Byrd

Rapidly growing mycobacteria are widespread saprophytes, but approximately one-third of identified species are also opportunistic pathogens in humans and animals, associated with skin, soft tissue, bone, and pulmonary infections as well as disseminated disease. Clinical and experimental evidence indicates a major role for the cell-mediated immune response in the pathogenesis of infection.


Microbiology | 2011

Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response.

Rachid Nessar; Jean-Marc Reyrat; Lisa B. Davidson; Thomas F. Byrd

Mycobacterium abscessus is considered to be the most virulent of the rapidly growing mycobacteria. Generation of bacterial gene knockout mutants has been a useful tool for studying factors that contribute to virulence of pathogenic bacteria. Until recently, the optimal genetic approach to generation of M. abscessus gene knockout mutants was not clear. Based on the recent identification of genetic recombineering as the preferred approach, a M. abscessus mutant was generated in which the gene mmpL4b, critical to glycopeptidolipid synthesis, was deleted. Compared to the previously well-characterized parental strain 390S, the mmpL4B deletion mutant had lost sliding motility and the ability to form biofilm, but acquired the ability to replicate in human macrophages and stimulate macrophage Toll-like receptor 2. This study demonstrates that deletion of a gene associated with expression of a cell-wall lipid can result in acquisition of an immunostimulatory, invasive bacterial phenotype and has important implications for the study of M. abscessus pathogenesis at the cellular level.


PLOS ONE | 2011

Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HβD2 Gene Expression and IL-8 Release

Lisa B. Davidson; Rachid Nessar; Prakasha Kempaiah; Douglas J. Perkins; Thomas F. Byrd

Mycobacterium abscessus has emerged as an important cause of lung infection, particularly in patients with bronchiectasis. Innate immune responses must be highly effective at preventing infection with M. abscessus because it is a ubiquitous environmental saprophyte and normal hosts are not commonly infected. M. abscessus exists as either a glycopeptidolipid (GPL) expressing variant (smooth phenotype) in which GPL masks underlying bioactive cell wall lipids, or as a variant lacking GPL which is immunostimulatory and invasive in macrophage infection models. Respiratory epithelium has been increasingly recognized as playing an important role in the innate immune response to pulmonary pathogens. Respiratory epithelial cells express toll-like receptors (TLRs) which mediate the innate immune response to pulmonary pathogens. Both interleukin-8 (IL-8) and human β-defensin 2 (HβD2) are expressed by respiratory epithelial cells in response to toll-like receptor 2 (TLR2) receptor stimulation. In this study, we demonstrate that respiratory epithelial cells respond to M. abscessus variants lacking GPL with expression of IL-8 and HβD2. Furthermore, we demonstrate that this interaction is mediated through TLR2. Conversely, M. abscessus expressing GPL does not stimulate expression of IL-8 or HβD2 by respiratory epithelial cells which is consistent with “masking” of underlying bioactive cell wall lipids by GPL. Because GPL-expressing smooth variants are the predominant phenotype existing in the environment, this provides an explanation whereby initial M. abscessus colonization of abnormal lung airways escapes detection by the innate immune system.


The Journal of Infectious Diseases | 2000

Aberrantly Low Transferrin Receptor Expression on Human Monocytes Is Associated with Nonpermissiveness for Legionella pneumophila Growth

Thomas F. Byrd; Marcus A. Horwitz

Growth of Legionella pneumophila within human monocytes is iron dependent. A person with monocytes uniquely nonpermissive to L. pneumophila growth was identified whose monocytes expressed an abnormally low number of transferrin receptors in the nonactivated state, similar to the typically low level expressed in the interferon-gamma-activated state. The monocytes failed to up-regulate transferrin receptor expression appropriately in response to iron-transferrin. After treatment for chronic periodontal disease, the subjects monocytes converted to a permissive state. In contrast to the nonpermissive state, the permissive monocytes had normal transferrin receptor expression and up-regulated transferrin receptor expression appropriately in response to iron-transferrin. Thus, a nonpermissive state for L. pneumophila intracellular multiplication is associated with low levels of transferrin receptor expression in nonactivated monocytes and with an inability to up-regulate transferrin receptor expression in response to iron-transferrin. This nonpermissive state may be related to chronic inflammatory conditions such as periodontal disease.


Journal of Clinical Microbiology | 2011

Demonstration of Cord Formation by Rough Mycobacterium abscessus Variants: Implications for the Clinical Microbiology Laboratory

Alejandro Sánchez-Chardi; Francesc Olivares; Thomas F. Byrd; Esther Julián; Cecilia Brambilla; Marina Luquin

ABSTRACT In low-income countries some infections caused by nontuberculous mycobacteria are misdiagnosed as multidrug-resistant tuberculosis. In most of these settings the observation of microscopic cords is the only technique used to identify Mycobacterium tuberculosis in the laboratory. In this article we definitively demonstrate that Mycobacterium abscessus, an emerging pulmonary pathogen, also forms microscopic cords.


Microbiology | 2002

A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element

Susan T. Howard; Thomas F. Byrd; C. Richard Lyons

A polymorphic region was discovered in the genetically uncharacterized opportunistic pathogen Mycobacterium abscessus. The region contains a novel 1.7 kb insertion sequence (IS) named ISMab1. ISMab1 contains two complete ORFs and one partial ORF located in segments with over 80% nucleotide identity to Mycobacterium avium IS1601 and IS999 and to previously unreported IS-like elements from Mycobacterium smegmatis. The marked similarity within this family of elements is supportive of horizontal transfer between environmental mycobacterial species. In clinical isolates, ISMab1 was either present as a single copy or absent. The polymorphic region containing ISMab1 was identified by genomic subtraction between a parental strain and phenotypic variant. The variant has a 14.2 kb genomic deletion and this is flanked in the parental strain by complex arrays of inverted and direct repeats. Clinical isolates of M. abscessus were probed for the deletion and flanking sequences and two were found to be missing more than 20 kb. No regional deletions were found in the type strain, ATCC 19977. Although M. abscessus is a rapidly growing species, comparative sequence analysis of 23 kb from the polymorphic region showed that most local ORFs have greater amino acid identity to proteins encoded by genes from the slowly growing mycobacteria, M. avium and Mycobacterium tuberculosis, than to the rapid-grower M. smegmatis. Several ORFs also have strong similarity to Pseudomonas aeruginosa genes with a potential role in beta-oxidation.

Collaboration


Dive into the Thomas F. Byrd's collaboration.

Top Co-Authors

Avatar

Susan T. Howard

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Justin T. Baca

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia Brambilla

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Esther Julián

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marina Luquin

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

C. Rick Lyons

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Mlady

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Jens Langsjoen

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge