Susan Tokarz
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan Tokarz.
Publications of the Astronomical Society of the Pacific | 1999
Emilio E. Falco; Michael J. Kurtz; Margaret J. Geller; John P. Huchra; James Peters; Perry L. Berlind; Douglas J. Mink; Susan Tokarz; Barbara Elwell
ABSTRACT The Zwicky Catalog of galaxies (ZC), with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
Astrophysical Journal Supplement Series | 2012
J. P. Huchra; Lucas M. Macri; Karen L. Masters; T. H. Jarrett; Perry L. Berlind; Michael L. Calkins; Aidan C. Crook; Roc Michael Cutri; Pirin Erdogdu; Emilio E. Falco; Teddy George; Conrad M. Hutcheson; Ofer Lahav; Jeff Mader; Jessica Mink; Nathalie Martimbeau; Stephen E. Schneider; Michael F. Skrutskie; Susan Tokarz; Michael Westover
m_{\mathrm{Zw}\,}\leq 15.5
Publications of the Astronomical Society of the Pacific | 2005
Daniel G. Fabricant; Robert G. Fata; John B. Roll; Edward Hertz; Nelson Caldwell; Thomas Gauron; John C. Geary; Brian A. McLeod; Andrew Szentgyorgyi; Joseph Zajac; Michael J. Kurtz; Jack Barberis; Henry Bergner; Warren R. Brown; Maureen A. Conroy; Roger Eng; Margaret J. Geller; Richard E. Goddard; Michael Honsa; Mark Mueller; Douglas J. Mink; Mark Ordway; Susan Tokarz; Deborah Freedman Woods; William F. Wyatt; Harland W. Epps; Ian P. Dell’Antonio
\end{document} , has been the basis for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of the ZC and redshift surveys based on it have relied on heterogeneous sets of galaxy coordinates and redshifts. Here we correct some of the inadequacies of previous catalogs by providing (1) coordinates with ≲2 \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb...
The Astrophysical Journal | 2000
Bradley M. Peterson; I. M. McHardy; Belinda J. Wilkes; Perry L. Berlind; R. Bertram; Michael L. Calkins; Stefan Collier; John P. Huchra; S. Mathur; I. E. Papadakis; J. Peters; Richard W. Pogge; Patrizia Romano; Susan Tokarz; P. Uttley; Marianne Vestergaard; R. M. Wagner
We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K_s ≤ 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5° for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K_s ≤ 11.75 mag and |b| ≥ 5° (≥8° toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h^(–1) Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K_s ≤ 11.25 mag and |b| ≥ 10°.
The Astrophysical Journal | 2002
Bradley M. Peterson; Perry L. Berlind; R. Bertram; K. Bischoff; N. G. Bochkarev; N. V. Borisov; A. N. Burenkov; Michael L. Calkins; L. Carrasco; V. H. Chavushyan; Ryan Chornock; Matthias Dietrich; V. T. Doroshenko; O. V. Ezhkova; A. V. Filippenko; Andrea M. Gilbert; John P. Huchra; W. Kollatschny; Douglas C. Leonard; Weidong Li; V. M. Lyuty; Yu. F. Malkov; Thomas Matheson; N. I. Merkulova; V. P. Mikhailov; Maryam Modjaz; Christopher A. Onken; Richard W. Pogge; V. I. Pronik; Bc Qian
ABSTRACT The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. In the configuration pioneered by the Autofib instrument at the Anglo‐Australian Telescope, Hectospec’s fiber probes are arranged in a radial “fisherman on the pond” geometry and held in position with small magnets. A pair of high‐speed, six‐axis robots move the 300 fiber buttons between observing configurations within ∼300 s, and to an accuracy of ∼25 μm. The optical fibers run for 26 m between the MMT’s focal surface and the bench spectrograph, operating at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textc...
The Astrophysical Journal | 1999
Bradley M. Peterson; Aaron J. Barth; Perry L. Berlind; R. Bertram; K. Bischoff; N. G. Bochkarev; A. N. Burenkov; F. Z. Cheng; M. Dietrich; A. V. Filippenko; E. Giannuzzo; Luis C. Ho; John P. Huchra; James F. Hunley; Shai Kaspi; W. Kollatschny; Douglas C. Leonard; Yu. F. Malkov; Thomas Matheson; M. Mignoli; Brant O. Nelson; P. Papaderos; J. Peters; Richard W. Pogge; V. I. Pronik; S. G. Sergeev; E. A. Sergeeva; A. I. Shapovalova; G. M. Stirpe; Susan Tokarz
We report on the results of a three-year program of coordinated X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051. The rapid continuum variations observed in the X-ray spectra are not detected in the optical, although the time-averaged X-ray and optical continuum fluxes are well correlated. Variations in the flux of the broad Hβ line are found to lag behind the optical continuum variations by 6 days (with an uncertainty of 2-3 days), and combining this with the line width yields a virial mass estimate of ~1.1 × 106 M☉, at the very low end of the distribution of active galactic nucleus masses measured by line reverberation. Strong variability of He II λ4686 is also detected, and the response time measured is similar to that of Hβ but with a much larger uncertainty. The He II λ4686 line is almost 5 times broader than Hβ, and it is strongly blueward asymmetric, as are the high-ionization UV lines recorded in archival spectra of NGC 4051. The data are consistent with the Balmer lines arising in a low-to-moderate-inclination disklike configuration and the high-ionization lines arising in an outflowing wind, of which we observe preferentially the near side. Previous observations of the narrow-line region morphology of this source suggest that the system is inclined by ~50°, and if this is applicable to the broad Hβ-emitting region, a central mass of ~1.4 × 106 M☉ can be inferred. During the third year of monitoring, both the X-ray continuum and the He II λ4686 line went into extremely low states, although the optical continuum and the Hβ broad line were both still present and variable. We suggest that the inner part of the accretion disk may have gone into an advection-dominated state, yielding little radiation from the hotter inner disk.
The Astrophysical Journal | 1994
Bradley M. Peterson; Perry L. Berlind; Richard Bertram; N. G. Bochkarev; D. Bond; Michael S. Brotherton; J. R. Busler; K. K. Chuvaev; Ross D. Cohen; M. Dietrich; M. Elvis; A. V. Filippenko; Craig B. Foltz; P. M. Garnavich; Luis C. Ho; E. Horine; K. Horne; John P. Huchra; Wolfram Kollatschny; Kirk T. Korista; M. Malkan; Thomas Matheson; M. Mignoli; Simon L. Morris; Ludmila S. Nazarova; J. Penfold; J. Peters; Richard W. Pogge; V. I. Pronik; Brian Rush
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad Hemission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 Hmeasurements. The Hvariations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r / L 1=2 ion . Moreover, the apparently linear nature of the correlation between the Hresponse time and the nonstellar optical continuum Fopt arises as a consequence of the changing shape of the continuum as it varies, specifically Fopt / F 0:56 UV . Subject headings: galaxies: active — galaxies: individual (NGC 5548) — galaxies: nuclei — galaxies: Seyfert
The Astronomical Journal | 2005
Aurora Sicilia-Aguilar; Lee Hartmann; Andrew Szentgyorgyi; Daniel G. Fabricant; Gábor Fűrész; John B. Roll; Maureen A. Conroy; Nuria Calvet; Susan Tokarz; Jesús Hernández
We present the results of 3 yr of ground-based observations of the Seyfert 1 galaxy NGC 5548, which, combined with previously reported data, yield optical continuum and broad-line Hβ light curves for a total of 8 yr. The light curves consist of over 800 points, with a typical spacing of a few days between observations. During this 8 yr period, the nuclear continuum has varied by more than a factor of 7, and the Hβ emission line has varied by a factor of nearly 6. The Hβ emission line responds to continuum variations with a time delay or lag of ~10-20 days, the precise value varying somewhat from year to year. We find some indications that the lag varies with continuum flux in the sense that the lag is larger when the source is brighter.
The Astrophysical Journal | 2015
Adam A. Miller; J. S. Bloom; Joseph W. Richards; Youngdae Lee; Dan L. Starr; N. Butler; Susan Tokarz; Nathan Smith; J. A. Eisner
We report on the results of a continuation of a large monitoring program of optical spectroscopy of the Seyfert 1 galaxy NGC 5548. The new observations presented here were obtained between 1990 December and 1992 October, and extend the existing database to nearly 1400 days, dating back to 1988 December. The continuum variations are generally smooth and well-resolved, except during the third year of this 4 year project, when the variations were apparently more rapid and of lower amplitude than observed at other times. The broad H(beta) emission line is found to vary in response to the continuum variations with a lag of about 18 days, but with some changes from year to year. The H(beta) transfer functions for each of the 4 yr and for the entire 4 yr database are derived by using a maximum entropy method.
The Astrophysical Journal | 1987
Donald H. Ferguson; James Liebert; Roc Michael Cutri; Richard F. Green; Steven P. Willner; Joao Evangelista Steiner; Susan Tokarz
We present results from high-resolution spectra of 237 stars in the Orion Nebula cluster (ONC) obtained during two engineering runs with the Hectochelle multifiber echelle spectrograph on the 6.5 m MMT. The ONC is the nearest populous young (age ~ 1 Myr) cluster and is therefore an important object for studies of the evolution of protoplanetary disks. Using the high spectral resolution of Hectochelle, we are able to distinguish stellar accretion and wind emission-line profiles from nebular emission lines and identify accreting members of the cluster from H? profiles with greater accuracy than previously possible. We find 15 new members on the basis of Li ?6707 absorption and H? emission. Line profiles of H? of some objects that are not too contaminated by nebular emission show features characteristic of mass inflow and ejection. We also present rotational velocities as part of an initial investigation into angular momentum evolution of very young stars, confirming a difference between classical T Tauri stars and weak-line T Tauri stars that had been found from period analysis. Finally, we present an initial study of the radial velocity dispersion of the brighter stars in the central cluster. The very small dispersion derived, ?1.8 km s-1, is in good agreement with estimates from proper motions.