Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Carrasco is active.

Publication


Featured researches published by Susana Carrasco.


Nephrology Dialysis Transplantation | 2011

Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy

Maria Dolores Sanchez-Niño; Ana B. Sanz; Susana Carrasco; Moin A. Saleem; Peter W. Mathieson; Jose M. Valdivielso; Marta Ruiz-Ortega; Jesús Egido; Alberto Ortiz

BACKGROUND Transforming growth factor-β1 (TGF-β1) and the macrophage inhibitory factor receptor CD74 link the metabolic disorder with tissue injury in diabetic nephropathy. Fabry disease is an X-linked lysosomal glycosphingolipid storage disorder resulting from a deficient activity of α-galactosidase A that leads to proteinuric renal injury. However, the link between the metabolic abnormality and renal injury is poorly characterized. Globotriaosylsphingosine (lyso-Gb3) was recently identified as a bioactive molecule accumulating in Fabry disease. We hypothesized that lyso-Gb3 could modulate the release of secondary mediators of injury in glomerular podocytes and that recently described nephroprotective actions of vitamin D receptor activation in diabetic nephropathy may apply to lyso-Gb3. METHODS Real time RT-PCR, ELISA and Western blot were used to study the biological activity of lyso-Gb3 in cultured human podocytes and potential modulation by vitamin D receptor activation. RESULTS In human podocytes, lyso-Gb3 dose and time dependently increased the expression of TGF-β1, extracellular matrix proteins (fibronectin and type IV collagen) and CD74. TGF-β1 mediated lyso-Gb3 effects on extracellular matrix production. Vitamin D receptor activation with paricalcitol or calcitriol prevented the increase in TGF-β1, CD74 and extracellular matrix induced by lyso-Gb3. CONCLUSIONS Lyso-Gb3 may have a role in glomerular injury in Fabry disease by promoting the release of secondary mediators of glomerular injury common to diabetic nephropathy. These effects are prevented by paricalcitol, raising the issue of vitamin D receptor activation as potential adjunctive therapy in Fabry nephropathy.


Kidney International | 2012

TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation

Maria C. Izquierdo; Ana Belen Sanz; Sergio Mezzano; Julià Blanco; Susana Carrasco; Maria Dolores Sanchez-Niño; Alberto Benito-Martin; Marta Ruiz-Ortega; Jesús Egido; Alberto Ortiz

TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a TNF superfamily cytokine that activates the fibroblast growth factor-inducible 14 (Fn14) receptor. Transcriptional analysis of experimental kidney tubulointerstitial inflammation showed a correlation between an upregulation of the mRNA for the transmembrane chemokine CXCL16, a T-cell chemoattractant, and Fn14 activation. Exogenous TWEAK increased mouse kidney CXCL16 expression and T-lymphocyte infiltration in vivo, processes inhibited by the NF-κB inhibitor parthenolide. Tubular cell CXCL16 was increased in a nephrotoxic tubulointerstitial inflammation model and neutralizing anti-TWEAK antibodies decreased this CXCL16 expression and lymphocyte infiltration. In human kidney biopsies with tubulointerstitial inflammation, tubular cell CXCL16 and Fn14 expressions were associated with inflammatory infiltrates. TWEAK upregulated CXCL16 mRNA expression in cultured renal tubular cells in an NF-κB-dependent manner and increased soluble and cellular CXCL16 protein. CXCL16 modestly promoted the expression of cytokines in tubular cells expressing its receptor (CXCR6) and appeared to synergize with TWEAK to promote an inflammatory response; however, it did not modulate tubular cell proliferation or survival. Thus, TWEAK upregulates the expression of the chemokine CXCL16 in tubular epithelium and this may contribute to kidney tubulointerstitial inflammation.


Journal of The American Society of Nephrology | 2017

Ferroptosis, but Not Necroptosis, Is Important in Nephrotoxic Folic Acid–Induced AKI

Diego Martin-Sanchez; Olga Ruiz-Andres; Jonay Poveda; Susana Carrasco; Pablo Cannata-Ortiz; Maria Dolores Sanchez-Niño; Marta Ruiz Ortega; Jesús Egido; Andreas Linkermann; Alberto Ortiz; Ana Belen Sanz

AKI is histologically characterized by necrotic cell death and inflammation. Diverse pathways of regulated necrosis have been reported to contribute to AKI, but the molecular regulators involved remain unclear. We explored the relative contributions of ferroptosis and necroptosis to folic acid (FA)-induced AKI in mice. FA-AKI in mice associates with lipid peroxidation and downregulation of glutathione metabolism proteins, features that are typical of ferroptotic cell death. We show that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, preserved renal function and decreased histologic injury, oxidative stress, and tubular cell death in this model. With respect to the immunogenicity of ferroptosis, Fer-1 prevented the upregulation of IL-33, an alarmin linked to necroptosis, and other chemokines and cytokines and prevented macrophage infiltration and Klotho downregulation. In contrast, the pancaspase inhibitor zVAD-fmk did not protect against FA-AKI. Additionally, although FA-AKI resulted in increased protein expression of the necroptosis mediators receptor-interacting protein kinase 3 (RIPK3) and mixed lineage domain-like protein (MLKL), targeting necroptosis with the RIPK1 inhibitor necrostatin-1 or genetic deficiency of RIPK3 or MLKL did not preserve renal function. Indeed, compared with wild-type mice, MLKL knockout mice displayed more severe AKI. However, RIPK3 knockout mice with AKI had less inflammation than their wild-type counterparts, and this effect associated with higher IL-10 concentration and regulatory T cell-to-leukocyte ratio in RIPK3 knockout mice. These data suggest that ferroptosis is the primary cause of FA-AKI and that immunogenicity secondary to ferroptosis may further worsen the damage, although necroptosis-related proteins may have additional roles in AKI.


Biochimica et Biophysica Acta | 2013

Fn14 in podocytes and proteinuric kidney disease.

Maria Dolores Sanchez-Niño; Jonay Poveda; Ana Belen Sanz; Sergio Mezzano; Susana Carrasco; Beatriz Fernandez-Fernandez; Linda C. Burkly; Viji Nair; Matthias Kretzler; Jeffrey B. Hodgin; Marta Ruiz-Ortega; Rafael Selgas; Jesús Egido; Alberto Ortiz

Non-proliferative proteinuric diseases are the most common primary glomerular disorders causing end-stage renal disease. These disorders may associate low level glomerular inflammation and podocyte expression of inflammatory mediators. However, the factors regulating podocyte expression of inflammatory mediators in vivo in non-immune disorders are poorly understood. We have now explored the regulation and role of TWEAK receptor Fn14 in mediating glomerular inflammation in cultured podocytes and in experimental and human non-immune proteinuria. Transcriptomics disclosed Fn14 and MCP-1 mRNA upregulation in glomeruli from patients with focal segmental glomerulosclerosis, as well as a correlation between the expression of both transcripts. Increased glomerular Fn14 and MCP-1 mRNA was confirmed in a second focal segmental glomerulosclerosis cohort and was also observed in membranous nephropathy. In human non-proliferative proteinuric kidney diseases podocytes displayed Fn14 and MCP-1 expression and NFκB activation. Podocyte Fn14 was increased in murine protein overload-induced proteinuria. In Fn14 knock-out mice with protein overload-induced proteinuria, glomerular and periglomerular macrophage infiltrates were reduced, as were MCP-1 mRNA and podocyte MCP-1 staining and podocyte numbers preserved as compared to wild-type counterparts. Adenovirus-mediated overexpression of TWEAK increased periglomerular macrophage infiltration in mice without prior kidney injury. In cultured podocytes inflammatory cytokines increased Fn14 mRNA and protein levels. TWEAK activated NFκB and increased MCP-1 mRNA and protein, an effect prevented by the NFκB inhibitor parthenolide. In conclusion, Fn14 activation results in NFκB-mediated pro-inflammatory effects on podocytes that may be relevant for the pathogenesis of non-proliferative proteinuric kidney disease of non-immune origin.


Toxicology and Applied Pharmacology | 2013

Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells.

Cristian González-Guerrero; Carlos Ocaña-Salceda; Sergio Berzal; Susana Carrasco; Beatriz Fernandez-Fernandez; Pablo Cannata-Ortiz; Jesús Egido; Alberto Ortiz; Adrián M. Ramos

The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity.


Archives of Toxicology | 2013

3,4-DGE is cytotoxic and decreases HSP27/HSPB1 in podocytes

Maria Dolores Sanchez-Niño; Jonay Poveda; Ana Belen Sanz; Susana Carrasco; Marta Ruiz-Ortega; Rafael Selgas; Jesús Egido; Alberto Ortiz

Hyperglycemia is the key driver of diabetic complications and increased concentrations of glucose degradation products. The study of peritoneal dialysis solution biocompatibility has highlighted the adverse biological effects of glucose degradation products. Recently, 3,4-dideoxyglucosone-3-ene (3,4-DGE) was identified as the most toxic glucose degradation product in peritoneal dialysis fluids. In addition, 3,4-DGE is present in high-fructose corn syrup, and its precursor 3-deoxyglucosone is increased in diabetes. The role of 3,4-DGE in glomerular injury had not been addressed. We studied the effects of 3,4-DGE on cultured human podocytes and in vivo in mice. 3,4-DGE induced apoptosis in podocytes in a dose- and time-dependent manner. 3,4-DGE promoted the release of cytochrome c from mitochondria and activation of caspase-3. While high glucose concentrations increased the levels of the podocyte intracellular antiapoptotic protein HSP27/HSPB1, 3,4-DGE decreased the expression of podocyte HSP27/HSPB1. Apoptosis induced by 3,4-DGE was caspase-dependent and could be prevented by the broad-spectrum caspase inhibitor zVAD-fmk. Antagonism of Bax by a Ku-70-derived peptide also prevented apoptosis. Intravenous administration of 3,4-DGE to healthy mice resulted in a decreased expression of HSP27/HSPB1 and caspase-3 activation in whole kidney and in podocytes in vivo. In conclusion, 3,4-DGE induces apoptotic cell death in cultured human podocytes, suggesting a potential role in glomerular injury resulting from metabolic disorders.


PLOS ONE | 2012

Inflammatory cytokines and survival factors from serum modulate tweak-induced apoptosis in PC-3 prostate cancer cells.

Ana Belen Sanz; Maria Dolores Sanchez-Niño; Susana Carrasco; Félix Manzarbeitia; Olga Ruiz-Andres; Rafael Selgas; Marta Ruiz-Ortega; Carmen Gonzalez-Enguita; Jesús Egido; Alberto Ortiz

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.


Journal of Cellular and Molecular Medicine | 2017

MXRA5 is a TGF-β1-regulated human protein with anti-inflammatory and anti-fibrotic properties

Jonay Poveda; Ana Belen Sanz; Beatriz Fernandez-Fernandez; Susana Carrasco; Marta Ruiz-Ortega; Pablo Cannata-Ortiz; Alberto Ortiz; Maria Dolores Sanchez-Niño

Current therapy for chronic kidney disease (CKD) is unsatisfactory because of an insufficient understanding of its pathogenesis. Matrix remodelling‐associated protein 5 (MXRA5, adlican) is a human protein of unknown function with high kidney tissue expression, not present in rodents. Given the increased expression of MXRA5 in injured tissues, including the kidneys, we have suggested that MXRA5 may modulate kidney injury. MXRA5 immunoreactivity was observed in tubular cells in human renal biopsies and in urine from CKD patients. We then explored factors regulating MXRA5 expression and MXRA5 function in cultured human proximal tubular epithelial cells and explored MXRA5 expression in kidney cancer cells and kidney tissue. The fibrogenic cytokine transforming growth factor‐β1 (TGFβ1) up‐regulated MXRA5 mRNA and protein expression. TGFβ1‐induced MXRA5 up‐regulation was prevented by either interference with TGFβ1 activation of the TGFβ receptor 1 (TGFBR1, ALK5) or by the vitamin D receptor agonist paricalcitol. By contrast, the pro‐inflammatory cytokine TWEAK did not modulate MXRA5 expression. MXRA5 siRNA‐induced down‐regulation of constitutive MXRA5 expression resulted in higher TWEAK‐induced expression of chemokines. In addition, MXRA5 down‐regulation resulted in a magnified expression of genes encoding extracellular matrix proteins in response to TGFβ1. Furthermore, in clear cell renal cancer, von Hippel–Lindau (VHL) regulated MXRA5 expression. In conclusion, MXRA5 is a TGFβ1‐ and VHL‐regulated protein and, for the first time, we identify MXRA5 functions as an anti‐inflammatory and anti‐fibrotic molecule. This information may yield clues to design novel therapeutic strategies in diseases characterized by inflammation and fibrosis.


Photochemistry and Photobiology | 2013

Laser Therapy in Metabolic Syndrome-Related Kidney Injury

Alvaro C. Ucero; Bettina Sabban; Alberto Benito-Martin; Susana Carrasco; Stephan Joeken; Alberto Ortiz

Metabolic syndrome is characterized by hyperglycemia, hypertension, dyslipidemia and obesity. Diabetes and hypertension are the main causes of chronic end‐stage kidney disease in humans. Chronic kidney disease is characterized by kidney inflammation and eventual development of kidney fibrosis. Low‐level laser (or light) therapy (LLLT) can be used to relieve pain associated with some inflammatory diseases due to photochemical effects. Despite the known contribution of inflammation to metabolic syndrome and kidney disease, there is scarce information on the potential therapeutic use of LLLT in renal disease. The aim of this randomized, placebo‐controlled study was to test the hypothesis that LLLT could modulate chronic kidney injury. Rats with nephropathy, hypertension, hyperlipidemia and type II diabetes (strain ZSF1) were subjected to three different conditions of LLLT or sham treatment for 8 weeks, and then sacrificed 10 weeks later. The main findings of this study are that the LLLT‐treated rats had lower blood pressure after treatment and a better preserved glomerular filtration rate with less interstitial fibrosis upon euthanasia at the end of follow‐up. This initial proof‐of‐concept study suggests that LLLT may modulate chronic kidney disease progression, providing a painless, noninvasive, therapeutic strategy, which should be further evaluated.


Biochimica et Biophysica Acta | 2016

NFκBiz protein downregulation in acute kidney injury: Modulation of inflammation and survival in tubular cells

Jonay Poveda; Ana Belen Sanz; Sandra Rayego-Mateos; Marta Ruiz-Ortega; Susana Carrasco; Alberto Ortiz; Maria Dolores Sanchez-Niño

Acute kidney injury is characterized by decreased renal function, tubular cell death and interstitial inflammation. The transcription factor NF-κB is a key regulator of genes involved in cell survival and the inflammatory response. In order to better understand the regulation and role of NF-κB in acute kidney injury we explored the expression of NF-κB-related genes in experimental acute kidney injury induced by a folic acid overdose. NFκBiz, a member of the IκB family of NF-κB regulators encoding NFκBiz, was among the top up-regulated NF-κB-related genes at the mRNA level in experimental acute kidney injury. However, the NFκBiz protein was constitutively expressed by normal tubular cells but was down-regulated in experimental acute kidney injury. Kidney NFκBiz mRNA upregulation and protein downregulation was also observed in acute kidney injury induced by cisplatin or unilateral kidney injury resulting from ureteral obstruction. Thus, we studied the consequences of NFκBiz protein downregulation by specific siRNA in cultured tubular epithelial cells. NFκBiz mRNA and protein were up-regulated by inflammatory cytokines (IL-1β or TWEAK/TNFα/IFNγ) and by LPS in cultured tubular cells. However, TWEAK only induced a very mild and short lived NFκBiz upregulation. NFκBiz targeting increased chemokine production and dampened Klotho downregulation induced by TWEAK, without modulating cell proliferation. NFκBiz targeting also rendered cells more resistant to apoptosis induced by serum deprivation or inflammatory cytokines. In conclusion, NFκBiz differentially regulates NF-κB-mediated responses of tubular cells to inflammatory cytokines in a gene-specific manner, and may be of potential therapeutic interest to limit inflammation in kidney disease.

Collaboration


Dive into the Susana Carrasco's collaboration.

Top Co-Authors

Avatar

Alberto Ortiz

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Belen Sanz

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Marta Ruiz-Ortega

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jesús Egido

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jonay Poveda

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pablo Cannata-Ortiz

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alberto Benito-Martin

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Martin-Sanchez

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge