Susana Sellés-Marchart
University of Alicante
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susana Sellés-Marchart.
Journal of Experimental Botany | 2011
María José Martínez-Esteso; Susana Sellés-Marchart; Diego Lijavetzky; María A. Pedreño; Roque Bru-Martínez
Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.
Journal of Proteomics | 2009
María José Martínez-Esteso; Susana Sellés-Marchart; J.C. Vera-Urbina; María A. Pedreño; Roque Bru-Martínez
In plant cells, elicitors induce defense responses that resemble those triggered by pathogen attack, such as the synthesis of phytoalexins and pathogen-related proteins which accumulate in the extracellular space. In the search for the particular proteins involved in defense responses, we investigated the changes in the extracellular proteome of a grapevine (Vitis vinifera cv. Gamay) cell suspension in response to elicitation with methylated cyclodextrins (MBCD) and methyl jasmonate (MeJA). Twenty-five of the 39 spots differentially expressed in 2-D gels were identified and found to be encoded by 10 different genes: three secretory peroxidases, chitinase-III, beta-1,3-glucanase, thaumatin-like, SGNH plant lipase-like, NtPR27-like, xyloglucan endotransglycosylase and subtilisin-like protease. Most of them belong to the pathogenesis-related type proteins. A new class III secretory basic peroxidase and chitinase III were strongly induced in cultures treated with MBCD alone or combined with MeJA, while cultures treated with MeJA alone displayed a general repression of most of the extracellular proteins. Some of the proteins induced in grapevine cell cultures by MBCD are induced in other species by activators of systemic acquired resistance (SAR), a form of plant immunity. Collectively, the results suggest that treatment with MBCD resembles the effect of SAR induction agents in cell cultures.
Journal of Proteomics | 2011
María José Martínez-Esteso; Susana Sellés-Marchart; J.C. Vera-Urbina; María A. Pedreño; Roque Bru-Martínez
We had previously shown that Vitis vinifera cv. Gamay cell suspension accumulates extracellularly large amounts of the phytoalexin trans-resveratrol (tR) in response to elicitation with methylated cyclodextrins (MBCD), which can be triplicated when the elicitor is combined with methyl jasmonate (MeJA). In parallel, new pathogenesis-related proteins accumulated in the apoplast-like extracellular space. The aim of this study was to investigate changes in the grapevine cell proteome potentially related to tR accumulation in response to the above elicitors. The DIGE technique was used to detect statistically significant changes in the cells proteome. A total number of 1031 unique spots were detected, 67 of which were de-regulated upon elicitation. Sixty-four spots were successfully identified by nLC-MS/MS database search analysis. The tR biosynthetic pathway enzymes were up-regulated by MBCD alone or combined with MeJA, but not by treatment with MeJA alone, in agreement with tR accumulation pattern. Seven spots contained stilbene synthase encoded by four different isogenes. Likewise, four glutathione-S-transferases, potentially involved in tR trafficking within the cell and across membranes, were up-regulated in the same fashion as stilbene synthases. The relation of other de-regulated proteins with other effects caused by elicitors on grapevine cells, namely defense response and cell growth inhibition, is discussed.
Proteomics | 2011
Juan Casado-Vela; Arancha Cebrián; María Teresa Gómez del Pulgar; Elsa Sánchez-López; Marta Vilaseca; Laura Menchén; Claudia Diema; Susana Sellés-Marchart; María José Martínez-Esteso; Noemí Yubero; Roque Bru-Martínez; Juan Caelos Lacal
Recent reviews pinpointed the enormous diversity of proteins found in living organisms, especially in higher eukaryotes. Protein diversity is driven through three main processes: first, at deoxyribonucleic acid (DNA) level (i.e. gene polymorphisms), second, at precursor messenger ribonucleic acid (pre‐mRNA) or messenger ribonucleic acid (mRNA) level (i.e. alternative splicing, also termed as differential splicing) and, finally, at the protein level (i.e. PTM). Current proteomic technologies allow the identification, characterization and quantitation of up to several thousands of proteins in a single experiment. Nevertheless, the identification and characterization of protein species using these technologies are still hampered. Here, we review the use of the terms “protein species” and “protein isoform.” We evidence that the appropriate selection of the database used for searches can impede or facilitate the identification of protein species. We also describe examples where protein identification search engines systematically fail in the attribution of protein species. We briefly review the characterization of protein species using proteomic technologies including gel‐based, gel‐free, bottom‐up and top‐down analysis and discuss their limitations. As an example, we discuss the theoretical characterization of the two human choline kinase species, α‐1 and α‐2, sharing the same catalytic activity but generated by alternative splicing on CHKA gene.
Analytical Biochemistry | 2014
Jaime Morante-Carriel; Susana Sellés-Marchart; Ascensión Martínez-Márquez; María José Martínez-Esteso; Ignacio Luque; Roque Bru-Martínez
RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were>2.0) but also of high yield (up to 720 μg on average [coefficient of variation=21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function.
Journal of Proteome Research | 2013
Ascensión Martínez-Márquez; Jaime Morante-Carriel; Susana Sellés-Marchart; María José Martínez-Esteso; José Luis Pineda-Lucas; Ignacio Luque; Roque Bru-Martínez
Multiple reaction monitoring (MRM) is emerging as a promising technique for the detection and quantification of protein biomarkers in complex biological samples. Compared to Western blotting or enzyme assays, its high sensitivity, specificity, accuracy, assay speed, and sample throughput represent a clear advantage for being the approach of choice for the analysis of proteins. MRM assays are capable of detecting and quantifying proteolytic peptides differing in mass unique to particular proteins, that is, proteotypic peptides, through which different protein isoforms can be distinguished. We have focused on polyphenol oxidase (PPO), a plant conspicuous enzyme encoded by a multigenic family in loquat (Eriobotrya japonica Lindl.) and other related species. PPO is responsible for both the protection of plants from biotic stress as a feeding deterrent for herbivore insects and the enzymatic browning of fruits and vegetables. The latter makes fruit more attractive to seed dispersal agents but is also a major cause of important economic losses in agriculture and food industry. An adequate management of PPO at plant breeding level would maximize the benefits and minimize the disadvantages of this enzyme, but it would require a precise knowledge of the biological role played by each isoform in the plant. Thus, for the functional study of the PPOs, we have cloned and overexpressed fragments of three PPO isoforms from loquat to develop MRM-based methods for the quantification of each isoform. The method was developed using an ion trap instrument and validated in a QQQ instrument. It resulted in the selection of at least two peptides for each isoform that can be monitored by at least three transitions. A combination of SDS-PAGE and MRM lead to detect two out of three monitored isoforms in different gel bands corresponding to different processing stages of PPO. The method was applied to determine the amount of the PPO2 isoform in protein extracts from fruit samples using external calibrants.
Journal of Proteome Research | 2008
Susana Sellés-Marchart; Ignacio Luque; Juan Casado-Vela; María José Martínez-Esteso; Roque Bru-Martínez
Here, we approach the problem of obtaining accurate and reliable information about the gene origin of a protein belonging to a multigenic family, polyphenol oxidase, from an underrepresented species, Eriobotrya japonica. De novo sequencing was a key approach to obtain broad sequence coverage. Alignment of peptides on their most similar homologous protein revealed divergent amino acid positions that lead to hypothesize the minimal number of genes encoding for the proteins analyzed.
Frontiers in Plant Science | 2015
María José Martínez-Esteso; Ascensión Martínez-Márquez; Susana Sellés-Marchart; Jaime Morante-Carriel; Roque Bru-Martínez
The development of omics has enabled the genome-wide exploration of all kinds of biological processes at the molecular level. Almost every field of plant biology has been analyzed at the genomic, transcriptomic and proteomic level. Here we focus on the particular contribution that proteomic technologies have made in progressing knowledge and characterising plant secondary metabolism (SM) pathways since early expectations were created 15 years ago. We analyzed how three major issues in the proteomic analysis of plant SM have been implemented in various research studies. These issues are: (i) the selection of a suitable plant material rich in secondary metabolites of interest, such as specialized tissues and organs, and in vitro cell cultures; (ii) the proteomic strategy to access target proteins, either a comprehensive or a differential analysis; (iii) the proteomic approach, represented by the hypothesis-free discovery proteomics and the hypothesis-driven targeted proteomics. We also examine to what extent the most-advanced technologies have been incorporated into proteomic research in plant SM and highlight some cutting edge techniques that would strongly benefit the progress made in this field.
Methods of Molecular Biology | 2014
María José Martínez-Esteso; Juan Casado-Vela; Susana Sellés-Marchart; María A. Pedreño; Roque Bru-Martínez
Protein relative quantitation is one of the main targets in many proteomic experiments. Among the range of techniques available for both top-down and bottom-up approaches, isobaric tags for relative and absolute quantitation (iTRAQ) have gained positions within the top-rank techniques used for this purpose in the recent years. Briefly, each iTRAQ reagent consists of three different components: a reporter group (with a variable mass in the range of 114-117 amu), a balance group, and an amino-reactive group. The isobaric nature of iTRAQ-labeled peptides adds a signal to every peptide in the sample which is detectable in both MS and MS/MS spectra, thus enhancing the sensitivity of detection. During MS/MS, the reporter groups are released as singly charged ions with m/z ratios ranking from 114 to 117 amu, visible in the low mass region of MS/MS spectra. The iTRAQ technology can be used to analyze up to four different samples using the 4-plex kit (reporter groups 114-115 amu) or can be scaled up to eight different samples using the 8-plex kit (reporter groups 113-121 amu). In this chapter, we focus on the experimental procedures typically using 4-plex labeling, including tips leading to successful application of iTRAQ technology for the analysis of plant protein mixtures.
Molecules | 2017
Elías Hurtado-Gaitán; Susana Sellés-Marchart; Ascensión Martínez-Márquez; Antonio Samper-Herrero; Roque Bru-Martínez
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans-resveratrol, trans-piceid, trans-piceatannol, trans-pterostilbene, and trans-ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis-piceid and trans-resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.