Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanna Chan is active.

Publication


Featured researches published by Susanna Chan.


Nature | 2011

Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma

Ryan D. Morin; Maria Mendez-Lago; Andrew J. Mungall; Rodrigo Goya; Karen Mungall; Richard Corbett; Nathalie A. Johnson; Tesa Severson; Readman Chiu; Matthew A. Field; Shaun D. Jackman; Martin Krzywinski; David W. Scott; Diane L. Trinh; Jessica Tamura-Wells; Sa Li; Marlo Firme; Sanja Rogic; Malachi Griffith; Susanna Chan; Oleksandr Yakovenko; Irmtraud M. Meyer; Eric Zhao; Duane E. Smailus; Michelle Moksa; Lisa M. Rimsza; Angela Brooks-Wilson; John J. Spinelli; Susana Ben-Neriah; Barbara Meissner

Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.


Nature | 2002

A physical map of the mouse genome

Simon G. Gregory; Mandeep Sekhon; Jacqueline E. Schein; Shaying Zhao; Kazutoyo Osoegawa; Carol Scott; Richard S. Evans; Paul W. Burridge; Tony Cox; Christopher A. Fox; Richard D. Hutton; Ian R. Mullenger; Kimbly J. Phillips; James Smith; Jim Stalker; Glen Threadgold; Ewan Birney; Kristine M. Wylie; Asif T. Chinwalla; John W. Wallis; LaDeana W. Hillier; Jason Carter; Tony Gaige; Sara Jaeger; Colin Kremitzki; Dan Layman; Jason Maas; Rebecca McGrane; Kelly Mead; Rebecca Walker

A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human–mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.


American Journal of Human Genetics | 2006

Oligonucleotide Microarray Analysis of Genomic Imbalance in Children with Mental Retardation

Jeffrey M. Friedman; Agnes Baross; Allen Delaney; Adrian Ally; Laura Arbour; Jennifer Asano; Dione K. Bailey; Sarah Barber; Patricia Birch; Mabel Brown-John; Manqiu Cao; Susanna Chan; David L. Charest; Noushin Farnoud; Nicole Fernandes; Stephane Flibotte; Anne Go; William T. Gibson; Robert A. Holt; Steven J.M. Jones; Giulia C. Kennedy; Martin Krzywinski; Sylvie Langlois; Haiyan I. Li; Barbara McGillivray; Tarun Nayar; Trevor J. Pugh; Evica Rajcan-Separovic; Jacqueline E. Schein; Angelique Schnerch

The cause of mental retardation in one-third to one-half of all affected individuals is unknown. Microscopically detectable chromosomal abnormalities are the most frequently recognized cause, but gain or loss of chromosomal segments that are too small to be seen by conventional cytogenetic analysis has been found to be another important cause. Array-based methods offer a practical means of performing a high-resolution survey of the entire genome for submicroscopic copy-number variants. We studied 100 children with idiopathic mental retardation and normal results of standard chromosomal analysis, by use of whole-genome sampling analysis with Affymetrix GeneChip Human Mapping 100K arrays. We found de novo deletions as small as 178 kb in eight cases, de novo duplications as small as 1.1 Mb in two cases, and unsuspected mosaic trisomy 9 in another case. This technology can detect at least twice as many potentially pathogenic de novo copy-number variants as conventional cytogenetic analysis can in people with mental retardation.


Genome Biology | 2006

Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics

Nansheng Chen; Allan K. Mah; Oliver E. Blacque; Jeffrey Shih-Chieh Chu; Kiran Phgora; Mathieu W. Bakhoum; C Rebecca Hunt Newbury; Jaswinder Khattra; Susanna Chan; Anne Go; Evgeni Efimenko; Robert C. Johnsen; Prasad Phirke; Peter Swoboda; Marco A. Marra; Donald G. Moerman; Michel R. Leroux; David L. Baillie; Lincoln Stein

BackgroundThe recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes.ResultsBy screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5(mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5.ConclusionOur comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome (BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.


BMC Medical Genomics | 2011

Comparison of genome-wide array genomic hybridization platforms for the detection of copy number variants in idiopathic mental retardation

Tracy Tucker; Alexandre Montpetit; David Chai; Susanna Chan; Sébastien Chénier; Bradley P. Coe; Allen Delaney; Patrice Eydoux; Wan L. Lam; Sylvie Langlois; Emmanuelle Lemyre; Marco A. Marra; Hong Qian; Guy A. Rouleau; David Vincent; Jacques L. Michaud; Jan M. Friedman

BackgroundClinical laboratories are adopting array genomic hybridization as a standard clinical test. A number of whole genome array genomic hybridization platforms are available, but little is known about their comparative performance in a clinical context.MethodsWe studied 30 children with idiopathic MR and both unaffected parents of each child using Affymetrix 500 K GeneChip SNP arrays, Agilent Human Genome 244 K oligonucleotide arrays and NimbleGen 385 K Whole-Genome oligonucleotide arrays. We also determined whether CNVs called on these platforms were detected by Illumina Hap550 beadchips or SMRT 32 K BAC whole genome tiling arrays and tested 15 of the 30 trios on Affymetrix 6.0 SNP arrays.ResultsThe Affymetrix 500 K, Agilent and NimbleGen platforms identified 3061 autosomal and 117 X chromosomal CNVs in the 30 trios. 147 of these CNVs appeared to be de novo, but only 34 (22%) were found on more than one platform. Performing genotype-phenotype correlations, we identified 7 most likely pathogenic and 2 possibly pathogenic CNVs for MR. All 9 of these putatively pathogenic CNVs were detected by the Affymetrix 500 K, Agilent, NimbleGen and the Illumina arrays, and 5 were found by the SMRT BAC array. Both putatively pathogenic CNVs identified in the 15 trios tested with the Affymetrix 6.0 were identified by this platform.ConclusionsOur findings demonstrate that different results are obtained with different platforms and illustrate the trade-off that exists between sensitivity and specificity. The large number of apparently false positive CNV calls on each of the platforms supports the need for validating clinically important findings with a different technology.


BMC Genomics | 2009

Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization

Jeffrey M. Friedman; Shelin Adam; Laura Arbour; Linlea Armstrong; Agnes Baross; Patricia Birch; Cornelius F. Boerkoel; Susanna Chan; David Chai; Allen Delaney; Stephane Flibotte; William T. Gibson; Sylvie Langlois; Emmanuelle Lemyre; H. Irene Li; Patrick MacLeod; Joan Mathers; Jacques L. Michaud; Barbara McGillivray; Millan S. Patel; Hong Qian; Guy A. Rouleau; Margot I. Van Allen; Siu-Li Yong; Farah R. Zahir; Patrice Eydoux; Marco A. Marra

BackgroundArray genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use.ResultsWe performed 500 K Affymetrix GeneChip® array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip® array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip® array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip® array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied.ConclusionAffymetrix GeneChip® 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip® array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip® array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience.


Oncogene | 2018

Transcriptomic analysis of CIC and ATXN1L reveal a functional relationship exploited by cancer

Derek Wong; Kohl Lounsbury; Amy Lum; Jungeun Song; Susanna Chan; Veronique G. LeBlanc; Marco A. Marra; Stephen Yip

Aberrations in Capicua (CIC) have recently been implicated as a negative prognostic factor in a multitude of cancer types through activation of the MAPK signalling cascade and derepression of oncogenic ETS transcription factors. The Ataxin-family protein ATXN1L has previously been reported to interact with CIC in developmental and disease contexts to facilitate the repression of CIC target genes. To further investigate this relationship, we performed functional in vitro studies utilizing ATXN1LKO and CICKO human cell lines and characterized a reciprocal functional relationship between CIC and ATXN1L. Transcriptomic interrogation of the CIC–ATXN1–ATXN1L axis in low-grade glioma, prostate adenocarcinoma and stomach adenocarcinoma TCGA cohorts revealed context-dependent convergence of gene sets and pathways related to mitotic cell cycle and division. This study highlights the CIC–ATXN1–ATXN1L axis as a more potent regulator of the cell cycle than previously appreciated.


Nucleic Acids Research | 2004

A set of BAC clones spanning the human genome

Martin Krzywinski; Ian Bosdet; Duane E. Smailus; Readman Chiu; Carrie Mathewson; Natasja Wye; Sarah Barber; Mabel Brown-John; Susanna Chan; Steve Chand; Alison Cloutier; Noreen Girn; Darlene Lee; Amara Masson; Michael Mayo; Teika Olson; Pawan Pandoh; Anna Liisa Prabhu; Eric F.P.M. Schoenmakers; Miranda Tsai; Donna G. Albertson; Wan L. Lam; Chik On Choy; Kazutoyo Osoegawa; Shaying Zhao; Pieter J. de Jong; Jacqueline E. Schein; Steven J.M. Jones; Marco A. Marra


Plant Journal | 2007

A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation.

Colin T. Kelleher; Readman Chiu; Heesun Shin; Ian Bosdet; Martin Krzywinski; Chris Fjell; Jennifer Wilkin; Tongming Yin; Stephen P. DiFazio; Johar Ali; Jennifer Asano; Susanna Chan; Alison Cloutier; Noreen Girn; Stephen Leach; Darlene Lee; Carrie Mathewson; Teika Olson; Katie O’Connor; Anna-Liisa Prabhu; Duane E. Smailus; Jeffery M. Stott; Miranda Tsai; Natasja Wye; George S. Yang; Jun Zhuang; Robert A. Holt; Nicholas H. Putnam; Julia Vrebalov; James J. Giovannoni


Genome Research | 2004

Integrated and Sequence-Ordered BAC- and YAC-Based Physical Maps for the Rat Genome

Martin Krzywinski; John W. Wallis; Claudia Gosele; Ian Bosdet; Readman Chiu; Tina Graves; Oliver Hummel; Dan Layman; Carrie Mathewson; Natasja Wye; Baoli Zhu; Derek Albracht; Jennifer Asano; Sarah Barber; Mabel Brown-John; Susanna Chan; Steve Chand; Alison Cloutier; Jonathon Davito; Chris Fjell; Tony Gaige; Detlev Ganten; Noreen Girn; Kurtis Guggenheimer; Heinz Himmelbauer; Thomas Kreitler; Stephen Leach; Darlene Lee; Hans Lehrach; Michael Mayo

Collaboration


Dive into the Susanna Chan's collaboration.

Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline E. Schein

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jennifer Asano

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Duane E. Smailus

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Noreen Girn

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Cloutier

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge