Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanna K. Remold is active.

Publication


Featured researches published by Susanna K. Remold.


PLOS Biology | 2005

Evolution of Mutational Robustness in an RNA Virus

Rebecca Montville; Rémy Froissart; Susanna K. Remold; Olivier Tenaillon; Paul E. Turner

Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage φ6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.


Nature Genetics | 2004

Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli.

Susanna K. Remold; Richard E. Lenski

The effects of mutations on phenotype and fitness may depend on the environment (phenotypic plasticity), other mutations (genetic epistasis) or both. Here we examine the fitness effects of 18 random insertion mutations in E. coli in two resource environments and five genetic backgrounds. We tested each mutation for plasticity and epistasis by comparing its fitness effects across these ecological and genetic contexts. Some mutations had no measurable effect in any of these contexts. None of the mutations had effects on phenotypic plasticity that were independent of genetic background. However, half the mutations had epistatic interactions such that their effects differed among genetic backgrounds, usually in an environment-dependent manner. Also, the pattern of mutational effects across backgrounds indicated that epistasis had been shaped primarily by unique events in the evolutionary history of a population rather than by repeatable events associated with shared environmental history.


Molecular Biology and Evolution | 2008

Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus

Susanna K. Remold; Andrew Rambaut; Paul E. Turner

Populations experiencing similar selection pressures can sometimes diverge in the genetic architectures underlying evolved complex traits. We used RNA virus populations of large size and high mutation rate to study the impact of historical environment on genome evolution, thus increasing our ability to detect repeatable patterns in the evolution of genetic architecture. Experimental vesicular stomatitis virus populations were evolved on HeLa cells, on MDCK cells, or on alternating hosts. Turner and Elena (2000. Cost of host radiation in an RNA virus. Genetics. 156:1465-1470.) previously showed that virus populations evolved in single-host environments achieved high fitness on their selected hosts but failed to increase in fitness relative to their ancestor on the unselected host and that alternating-host-evolved populations had high fitness on both hosts. Here we determined the complete consensus sequence for each evolved population after 95 generations to gauge whether the parallel phenotypic changes were associated with parallel genomic changes. We also analyzed the patterns of allele substitutions to discern whether differences in fitness across hosts arose through true pleiotropy or the presence of not only a mutation that is beneficial in both hosts but also 1 or more mutations at other loci that are costly in the unselected environment (mutation accumulation [MA]). We found that ecological history may influence to what extent pleiotropy and MA contribute to fitness asymmetries across environments. We discuss the degree to which current genetic architecture is expected to constrain future evolution of complex traits, such as host use by RNA viruses.


PLOS Genetics | 2005

Expression Profiles Reveal Parallel Evolution of Epistatic Interactions Involving the CRP Regulon in Escherichia coli

Tim F. Cooper; Susanna K. Remold; Richard E. Lenski; Dominique Schneider

The extent and nature of epistatic interactions between mutations are issues of fundamental importance in evolutionary biology. However, they are difficult to study and their influence on adaptation remains poorly understood. Here, we use a systems-level approach to examine epistatic interactions that arose during the evolution of Escherichia coli in a defined environment. We used expression arrays to compare the effect on global patterns of gene expression of deleting a central regulatory gene, crp. Effects were measured in two lineages that had independently evolved for 20,000 generations and in their common ancestor. We found that deleting crp had a much more dramatic effect on the expression profile of the two evolved lines than on the ancestor. Because the sequence of the crp gene was unchanged during evolution, these differences indicate epistatic interactions between crp and mutations at other loci that accumulated during evolution. Moreover, a striking degree of parallelism was observed between the two independently evolved lines; 115 genes that were not crp-dependent in the ancestor became dependent on crp in both evolved lines. An analysis of changes in crp dependence of well-characterized regulons identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for these parallel expression changes. Mutations within three of these genes have previously been found and shown to contribute to fitness. Overall, these findings indicate that epistasis has been important in the adaptive evolution of these lines, and they provide new insight into the types of genetic changes through which epistasis can evolve. More generally, we demonstrate that expression profiles can be profitably used to investigate epistatic interactions.


The Journal of Experimental Biology | 2004

Differences in the effects of salinity on larval growth and developmental programs of a freshwater and a euryhaline mosquito species (Insecta: Diptera, Culicidae)

Thomas M. Clark; Benjamin J. Flis; Susanna K. Remold

SUMMARY The effects of salinity on growth and development of the euryhaline Ochlerotatus taeniorhynchus and the freshwater Aedes aegypti are compared. O. taeniorhynchus grow larger, and have greater intrinsic growth rates, than A. aegypti. Females of each species attain greater mass, take longer to develop, and have greater growth rates than do males. In O. taeniorhynchus, pupal mass, larval stage duration and growth rates (dry mass) increase with salinity, whereas growth rates (wet mass) remain constant across salinities, reflecting a decrease in percent body water. The pupal mass (wet or dry) of O. taeniorhynchus is determined primarily by effects of salinity on the rate of assimilation of dry mass, because the latter contributes very strongly to final pupal mass in both species. In contrast, the duration of A. aegypti larval stage follows a υ-shaped curve, with most rapid development at intermediate salinities. Growth rates of A. aegypti decrease with increasing salinity, and percent body water is constant across salinities. As for O. taeniorhynchus, duration of A. aegypti larval stage increases at high salinity. However, this increase in larval stage duration cannot compensate for the decrease in growth rate at high salinity, resulting in an overall decrease in both wet and dry pupal mass at high salinity. Thus, salinity has fundamentally different effects on developmental programs and phenotypic plasticity in the two species investigated.


Evolution | 2010

ROLE OF EVOLVED HOST BREADTH IN THE INITIAL EMERGENCE OF AN RNA VIRUS

Paul E. Turner; Nadya M. Morales; Barry W. Alto; Susanna K. Remold

Understanding how evolution promotes pathogen emergence would aid disease management, and prediction of future host shifts. Increased pathogen infectiousness of different hosts may occur through direct selection, or fortuitously via indirect selection. However, it is unclear which type of selection tends to produce host breadth promoting pathogen emergence. We predicted that direct selection for host breadth should foster emergence by causing higher population growth on new hosts, lower among‐population variance in growth on new hosts, and lower population variance in growth across new hosts. We tested the predictions using experimentally evolved vesicular stomatitis virus populations, containing groups of host‐use specialists, directly selected generalists, and indirectly selected generalists. In novel‐host challenges, viruses directly selected for generalism showed relatively higher or equivalent host growth, lower among‐population variance in host growth, and lower population variance in growth across hosts. Thus, two of three outcomes supported our prediction that directly selected host breadth should favor host colonization. Also, we observed that indirectly selected generalists were advantaged over specialist viruses, indicating that fortuitous changes in host breadth may also promote emergence. We discuss evolution of phenotypic plasticity versus environmental robustness in viruses, virus avoidance of extinction, and surveillance of pathogen niche breadth to predict future likelihood of emergence.


Microbial Ecology | 2011

Differential Habitat Use and Niche Partitioning by Pseudomonas Species in Human Homes

Susanna K. Remold; Christopher K. Brown; Justin E. Farris; Thomas C. Hundley; Jessica A. Perpich; Megan E. Purdy

Many species of Pseudomonas have the ability to use a variety of resources and habitats, and as a result Pseudomonas are often characterized as having broad fundamental niches. We questioned whether actual habitat use by Pseudomonas species is equally broad. To do this, we sampled extensively to describe the biogeography of Pseudomonas within the human home, which presents a wide variety of habitats for microbes that live in close proximity to humans but are not part of the human flora, and for microbes that are opportunistic pathogens, such as Pseudomonas aeruginosa. From 960 samples taken in 20 homes, we obtained 163 Pseudomonas isolates. The most prevalent based on identification using the SepsiTest BLAST analysis of 16S rRNA (http://www.sepsitest-blast.de) were Pseudomonas monteilii (42 isolates), Pseudomonas plecoglossicida, Pseudomonas fulva, and P. aeruginosa (approximately 25 each). Of these, all but P. fulva differed in recovery rates among evaluated habitat types (drains, soils, water, internal vertebrate sites, vertebrate skin, inanimate surfaces, and garbage/compost) and all four species also differed in recovery rates among subcategories of habitat types (e.g., types of soils or drains). We also found that at both levels of habitat resolution, each of these six most common species (the four above plus Pseudomonas putida and Pseudomonas oryzihabitans) were over- or under-represented in some habitats relative to their contributions to the total Pseudomonas collected across all habitats. This pattern is consistent with niche partitioning. These results suggest that, whereas Pseudomonas are often characterized as generalists with broad fundamental niches, these species in fact have more restricted realized niches. Furthermore, niche partitioning driven by competition among Pseudomonas species may be contributing to the observed variability in habitat use by Pseudomonas in this system.


The Journal of Experimental Biology | 2004

pH tolerances and regulatory abilities of freshwater and euryhaline Aedine mosquito larvae

Thomas M. Clark; Benjamin J. Flis; Susanna K. Remold

SUMMARY The pH regulatory abilities of two members of the mosquito tribe Aedini, known to have dramatically different saline tolerances, are investigated. The freshwater mosquito Aedes aegypti and the euryhaline Ochlerotatus taeniorhynchus tolerate very similar pH ranges. Both species complete larval development in waters ranging from pH 4 to pH 11, but naïve larvae always die in water of pH 3 or 12. Across the pH range 4–11, the hemolymph pH of O. taeniorhynchus is maintained constant while that of A. aegypti varies by 0.1 pH units. The salt composition of the water (3.5 g l–1 sea salt, 3.5 g l–1 NaCl, or nominally salt-free) has no effect on the range of pH tolerated by A. aegypti. In both species, the effects of pH on larval growth and development are minor in comparison with the influence of species and sex. Acclimation of A. aegypti to pH 4 or 11 increases survival times in pH 3 or 12, respectively, and allows a small percentage of larvae to pupate successfully at these extreme pH values. Such acclimation does not compromise survival at the other pH extreme.


Evolution | 2010

GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE

Kara J. o’Keefe; Olin K. Silander; Helen McCreery; Daniel M. Weinreich; Kevin M. Wright; Lin Chao; Scott V. Edwards; Susanna K. Remold; Paul E. Turner

The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses. In addition, consistent with earlier findings, our phylogenetic analyses and calculations of linkage disequilibrium (LD) show no evidence of within‐segment recombination in wild populations. However, in contrast to the prior study, our analysis finds that reassortment of segments between individual phage plays a lesser role among cystoviruses sampled in New England, suggesting that the evolutionary importance of genetic mixis in Cystoviridae phage may vary according to geography. We discuss possible explanations for these conflicting results across the studies, such as differing local ecology and its impact on phage growth, and geographic differences in selection against hybrid phage genotypes.


Journal of Virology | 2013

The Murine Model for Hantaan Virus-Induced Lethal Disease Shows Two Distinct Paths in Viral Evolutionary Trajectory with and without Ribavirin Treatment

Dong-Hoon Chung; Ake Vastermark; Jeremy V. Camp; Ryan C. McAllister; Susanna K. Remold; Yong-Kyu Chu; Carl E.G. Bruder; Colleen B. Jonsson

ABSTRACT In vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice. In untreated, HTNV-infected mice, the vRNA copy number increased for 10 days postinfection (dpi) and thereafter remained constant through 26 dpi. Surprisingly, in ribavirin-treated, HTNV-infected mice, vRNA levels were similar to those in untreated mice between 10 and 26 dpi. Infectious virus levels, however, were different: in ribavirin-treated mice, the amount of infectious HTNV was significantly decreased relative to that in untreated mice, suggesting that ribavirin reduced the specific infectivity of the virus (amount of infectious virus produced per vRNA copy). Mutational analysis revealed a ribavirin-associated elevation in mutation frequency in HTNV vRNA similar to that previously reported in vitro. Codon-based analyses of rates of nonsynonymous (dN) and synonymous (dS) substitutions in the S segment revealed a positive selection for codons within the HTNV N protein gene in the ribavirin-treated vRNA population. In contrast, the vRNA population in untreated, HTNV-infected mice showed a lower level of diversity, reflecting purifying selection for the wild-type genome. In summary, these experiments show two different evolutionary paths that Hantavirus may take during infection in a lethal murine model of disease, as well as the importance of the in vivo host environment in the evolution of the virus, which was not apparent in our prior in vitro model system.

Collaboration


Dive into the Susanna K. Remold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Clark

Indiana University South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Chao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ake Vastermark

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge