Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Neschen is active.

Publication


Featured researches published by Susanne Neschen.


Journal of Clinical Investigation | 2005

Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents

Katsutaro Morino; Kitt Falk Petersen; Sylvie Dufour; Douglas E. Befroy; Jared Frattini; Nadine Shatzkes; Susanne Neschen; Morris F. White; Stefan Bilz; Saki Sono; Marc Pypaert; Gerald I. Shulman

To further explore the nature of the mitochondrial dysfunction and insulin resistance that occur in the muscle of young, lean, normoglycemic, insulin-resistant offspring of parents with type 2 diabetes (IR offspring), we measured mitochondrial content by electron microscopy and insulin signaling in muscle biopsy samples obtained from these individuals before and during a hyperinsulinemic-euglycemic clamp. The rate of insulin-stimulated muscle glucose uptake was approximately 60% lower in the IR offspring than the control subjects and was associated with an approximately 60% increase in the intramyocellular lipid content as assessed by H magnetic resonance spectroscopy. Muscle mitochondrial density was 38% lower in the IR offspring. These changes were associated with a 50% increase in IRS-1 Ser312 and IRS-1 Ser636 phosphorylation and an approximately 60% reduction in insulin-stimulated Akt activation in the IR offspring. These data provide new insights into the earliest defects that may be responsible for the development of type 2 diabetes and support the hypothesis that reductions in mitochondrial content result in decreased mitochondrial function, which predisposes IR offspring to intramyocellular lipid accumulation, which in turn activates a serine kinase cascade that leads to defects in insulin signaling and action in muscle.


Journal of Clinical Investigation | 2007

The central melanocortin system directly controls peripheral lipid metabolism

Ruben Nogueiras; Petra Wiedmer; Diego Perez-Tilve; Christelle Veyrat-Durebex; Julia M. Keogh; Gregory M. Sutton; Paul T. Pfluger; Tamara R. Castañeda; Susanne Neschen; Susanna M. Hofmann; Philip N. Howles; Donald A. Morgan; Stephen C. Benoit; Ildiko Szanto; Brigitte Schrott; Annette Schürmann; Hans-Georg Joost; Craig Hammond; David Y. Hui; Stephen C. Woods; Kamal Rahmouni; Andrew A. Butler; I. Sadaf Farooqi; Françoise Rohner-Jeanrenaud; Matthias H. Tschöp

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Journal of Clinical Investigation | 2000

Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle

Jason K. Kim; M. Dodson Michael; Stephen F. Previs; Odile D. Peroni; Franck Mauvais-Jarvis; Susanne Neschen; Barbara B. Kahn; C. Ronald Kahn; Gerald I. Shulman

Obesity and insulin resistance in skeletal muscle are two major factors in the pathogenesis of type 2 diabetes. Mice with muscle-specific inactivation of the insulin receptor gene (MIRKO) are normoglycemic but have increased fat mass. To identify the potential mechanism for this important association, we examined insulin action in specific tissues of MIRKO and control mice under hyperinsulinemic-euglycemic conditions. We found that insulin-stimulated muscle glucose transport and glycogen synthesis were decreased by about 80% in MIRKO mice, whereas insulin-stimulated fat glucose transport was increased threefold in MIRKO mice. These data demonstrate that selective insulin resistance in muscle promotes redistribution of substrates to adipose tissue thereby contributing to increased adiposity and development of the prediabetic syndrome.


Journal of Biological Chemistry | 2007

Suppression of Diacylglycerol Acyltransferase-2 (DGAT2), but Not DGAT1, with Antisense Oligonucleotides Reverses Diet-induced Hepatic Steatosis and Insulin Resistance

Cheol Soo Choi; David B. Savage; Ameya Kulkarni; Xing Xian Yu; Zhen-Xiang Liu; Katsutaro Morino; Sheene Kim; Alberto Distefano; Varman T. Samuel; Susanne Neschen; Dongyan Zhang; Amy Wang; Xian-Man Zhang; Mario Kahn; Gary W. Cline; Sanjay K. Pandey; John G. Geisler; Sanjay Bhanot; Brett P. Monia; Gerald I. Shulman

Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase Cϵ activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase Cϵ activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.


Nature Medicine | 2008

Dual role of proapoptotic BAD in insulin secretion and beta cell survival

Nika N. Danial; Loren D. Walensky; Chen-Yu Zhang; Cheol Soo Choi; Jill K. Fisher; Anthony J A Molina; Sandeep Robert Datta; Kenneth Pitter; Gregory H. Bird; Jakob D. Wikstrom; J T Deeney; Kirsten Robertson; Joel Morash; Ameya Kulkarni; Susanne Neschen; Sheene Kim; Michael E. Greenberg; Barbara E. Corkey; Orian S. Shirihai; Gerald I. Shulman; Bradford B. Lowell; Stanley J. Korsmeyer

The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.


Diabetes | 2007

n-3 Fatty Acids Preserve Insulin Sensitivity In Vivo in a Peroxisome Proliferator–Activated Receptor-α–Dependent Manner

Susanne Neschen; Katsutaro Morino; Jianying Dong; Yanlin Wang-Fischer; Gary W. Cline; Anthony J. Romanelli; Jörg C. Rossbacher; Irene K. Moore; Werner Regittnig; David S. Munoz; Jung H. Kim; Gerald I. Shulman

Recent studies have suggested that n-3 fatty acids, abundant in fish oil, protect against high-fat diet–induced insulin resistance through peroxisome proliferator–activated receptor (PPAR)-α activation and a subsequent decrease in intracellular lipid abundance. To directly test this hypothesis, we fed PPAR-α null and wild-type mice for 2 weeks with isocaloric high-fat diets containing 27% fat from either safflower oil or safflower oil with an 8% fish oil replacement (fish oil diet). In both genotypes the safflower oil diet blunted insulin-mediated suppression of hepatic glucose production (P < 0.02 vs. genotype control) and PEPCK gene expression. Feeding wild-type mice a fish oil diet restored hepatic insulin sensitivity (hepatic glucose production [HGP], P < 0.002 vs. wild-type mice fed safflower oil), whereas in contrast, in PPAR-α null mice failed to counteract hepatic insulin resistance (HGP, P = NS vs. PPAR-α null safflower oil–fed mice). In PPAR-α null mice fed the fish oil diet, safflower oil plus fish oil, hepatic insulin resistance was dissociated from increases in hepatic triacylglycerol and acyl-CoA but accompanied by a more than threefold increase in hepatic diacylglycerol concentration (P < 0.0001 vs. genotype control). These data support the hypothesis that n-3 fatty acids protect from high-fat diet–induced hepatic insulin resistance in a PPAR-α–and diacylglycerol-dependent manner.


Diabetes | 2008

Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle

Katsutaro Morino; Susanne Neschen; Stefan Bilz; Saki Sono; Dimitrios N. Tsirigotis; Richard M. Reznick; Irene K. Moore; Yoshio Nagai; Varman T. Samuel; David Sebastián; Morris F. White; William M. Philbrick; Gerald I. Shulman

OBJECTIVE—Insulin resistance in skeletal muscle plays a critical role in the pathogenesis of type 2 diabetes, yet the cellular mechanisms responsible for insulin resistance are poorly understood. In this study, we examine the role of serine phosphorylation of insulin receptor substrate (IRS)-1 in mediating fat-induced insulin resistance in skeletal muscle in vivo. RESEARCH DESIGN AND METHODS—To directly assess the role of serine phosphorylation in mediating fat-induced insulin resistance in skeletal muscle, we generated muscle-specific IRS-1 Ser302, Ser307, and Ser612 mutated to alanine (Tg IRS-1 Ser→Ala) and IRS-1 wild-type (Tg IRS-1 WT) transgenic mice and examined insulin signaling and insulin action in skeletal muscle in vivo. RESULTS—Tg IRS-1 Ser→Ala mice were protected from fat-induced insulin resistance, as reflected by lower plasma glucose concentrations during a glucose tolerance test and increased insulin-stimulated muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. In contrast, Tg IRS-1 WT mice exhibited no improvement in glucose tolerance after high-fat feeding. Furthermore, Tg IRS-1 Ser→Ala mice displayed a significant increase in insulin-stimulated IRS-1–associated phosphatidylinositol 3-kinase activity and Akt phosphorylation in skeletal muscle in vivo compared with WT control littermates. CONCLUSIONS—These data demonstrate that serine phosphorylation of IRS-1 plays an important role in mediating fat-induced insulin resistance in skeletal muscle in vivo.


Diabetes | 2006

Immunoneutralization of Endogenous Glucagon Reduces Hepatic Glucose Output and Improves Long-Term Glycemic Control in Diabetic ob/ob Mice

Heidi Sørensen; Christian L. Brand; Susanne Neschen; Jens J. Holst; Keld Fosgerau; Erica Nishimura; Gerald I. Shulman

In type 2 diabetes, glucagon levels are elevated in relation to the prevailing insulin and glucose levels. The relative hyperglucagonemia is linked to increased hepatic glucose output (HGO) and hyperglycemia. Antagonizing the effects of glucagon is therefore considered an attractive target for treatment of type 2 diabetes. In the current study, effects of eliminating glucagon signaling with a glucagon monoclonal antibody (mAb) were investigated in the diabetic ob/ob mouse. Acute effects of inhibiting glucagon action were studied by an oral glucose tolerance test (OGTT) and by measurement of HGO. In addition, the effects of subchronic (5 and 14 days) glucagon mAb treatment on plasma glucose, insulin, triglycerides, and HbA1c (A1C) levels were investigated. Glucagon mAb treatment reduced the area under the curve for glucose after an OGTT, reduced HGO, and increased the rate of hepatic glycogen synthesis. Glucagon mAb treatment for 5 days lowered plasma glucose and triglyceride levels, whereas 14 days of glucagon mAb treatment reduced A1C. In conclusion, acute and subchronic neutralization of endogenous glucagon improves glycemic control, thus supporting the contention that glucagon antagonism may represent a beneficial treatment of diabetes.


The ISME Journal | 2014

Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet.

Alesia Walker; Barbara Pfitzner; Susanne Neschen; Melanie Kahle; Mourad Harir; Marianna Lucio; Franco Moritz; Dimitrios Tziotis; Michael Witting; Michael Rothballer; Marion Engel; Michael Schmid; David Endesfelder; Martin Klingenspor; Thomas Rattei; Wolfgang zu Castell; Martin Hrabé de Angelis; Anton Hartmann; Philippe Schmitt-Kopplin

A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host–microbial nutritional adaptation.


Cell Metabolism | 2010

Resistance to High-fat Diet-induced Obesity and Insulin Resistance in Mice with Very Long-chain Acyl-CoA Dehydrogenase Deficiency

Dongyan Zhang; Jennifer Christianson; Zhen-Xiang Liu; Liqun Tian; Cheol Soo Choi; Susanne Neschen; Jianying Dong; Philip A. Wood; Gerald I. Shulman

Mitochondrial fatty acid oxidation provides an important energy source for cellular metabolism, and decreased mitochondrial fatty acid oxidation has been implicated in the pathogenesis of type 2 diabetes. Paradoxically, mice with an inherited deficiency of the mitochondrial fatty acid oxidation enzyme, very long-chain acyl-CoA dehydrogenase (VLCAD), were protected from high-fat diet-induced obesity and liver and muscle insulin resistance. This was associated with reduced intracellular diacylglycerol content and decreased activity of liver protein kinase Cvarepsilon and muscle protein kinase Ctheta. The increased insulin sensitivity in the VLCAD(-/-) mice were protected from diet-induced obesity and insulin resistance due to chronic activation of AMPK and PPARalpha, resulting in increased fatty acid oxidation and decreased intramyocellular and hepatocellular diacylglycerol content.

Collaboration


Dive into the Susanne Neschen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary W. Cline

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

H. Vogel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsutaro Morino

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge