Susanne Quintes
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanne Quintes.
The Journal of Neuroscience | 2009
Gesine Saher; Susanne Quintes; Wiebke Möbius; Michael C. Wehr; Eva-Maria Krämer-Albers; Britta Brügger; Klaus-Armin Nave
Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.
The Neuroscientist | 2011
Gesine Saher; Susanne Quintes; Klaus-Armin Nave
Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.
Journal of The Peripheral Nervous System | 2010
Susanne Quintes; Sandra Goebbels; Gesine Saher; Markus H. Schwab; Klaus-Armin Nave
The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron–Schwann cell signaling have been identified. Neuregulin‐1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate‐limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3‐kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt–Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro‐myelinating signals has to be under tight and life‐long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A.
The Journal of Neuroscience | 2012
Ursula Fünfschilling; Wolf J. Jockusch; Nandhini Sivakumar; Wiebke Möbius; Kristina Corthals; Sai Li; Susanne Quintes; Younghoon Kim; Iwan A. T. Schaap; Jeong-Seop Rhee; Klaus-Armin Nave; Gesine Saher
Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.
Journal of Structural Biology | 2011
Tanja Dučić; Susanne Quintes; Klaus-Armin Nave; Jean Susini; Margaret Rak; Rémi Tucoulou; Mihai Alevra; Peter Guttmann; Tim Salditt
We report elemental mappings on the sub-cellular level of myelinated sciatic neurons isolated from wild type mice, with high spatial resolution. The distribution of P, S, Cl, Na, K, Fe, Mn, Cu was imaged in freeze-dried as well as cryo-preserved specimen, using the recently developed cryogenic sample environment at beamline ID21 at the European Synchrotron Radiation Facility (ESRF). In addition, synchrotron radiation based Fourier transform infrared (FTIR) spectromicroscopy was used as a chemically sensitive imaging method. Finally single fiber diffraction in highly focused hard X-ray beams, and soft X-ray microscopy and tomography in absorption contrast are demonstrated as novel techniques for the study of single nerve fibers.
FEBS Letters | 2011
Celia M. Kassmann; Susanne Quintes; Jens Rietdorf; Wiebke Möbius; Michael W. Sereda; Tobias Nientiedt; Gesine Saher; Myriam Baes; Klaus-Armin Nave
Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin‐forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron‐dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long‐term axonal integrity.
eLife | 2017
Sandra Kleinecke; Sarah Richert; Livia de Hoz; Britta Brügger; Theresa Kungl; Ebrahim Asadollahi; Susanne Quintes; Judith Blanz; Rhona McGonigal; Kobra Naseri; Michael W. Sereda; Christian Lüchtenborg; Wiebke Möbius; Hugh J. Willison; Myriam Baes; Klaus-Armin Nave; Celia M. Kassmann
Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels. DOI: http://dx.doi.org/10.7554/eLife.23332.001
Neurogenesis | 2017
Bastian G. Brinkmann; Susanne Quintes
ABSTRACT Development of Schwann cells is tightly regulated by concerted action of activating and inhibiting factors. Most of the regulatory feedback loops identified to date are transcriptional activators promoting induction of genes coding for integral myelin proteins and lipids. The mechanisms by which inhibitory factors are silenced during Schwann cell maturation are less well understood. We could recently show a pivotal function for the transcription factor zinc finger E-box binding homeobox 2 (Zeb2) during Schwann cell development and myelination as a transcriptional repressor of maturation inhibitors. Zeb2 belongs to a family of highly conserved 2-handed zinc-finger proteins and represses gene transcription by binding to E-box sequences in the regulatory region of target genes. The protein is known to repress E-cadherin during epithelial to mesenchymal transition (EMT) in tumor malignancy and mediates its functions by interacting with multiple co-factors. During nervous system development, Zeb2 is expressed in neural crest cells, the precursors of Schwann cells, the myelinating glial cells of peripheral nerves. Schwann cells lacking Zeb2 fail to fully differentiate and are unable to sort and myelinate peripheral nerve axons. The maturation inhibitors Sox2, Ednrb and Hey2 emerge as targets for Zeb2-mediated transcriptional repression and show persistent aberrant expression in Zeb2-deficient Schwann cells. While dispensible for adult Schwann cells, re-activation of Zeb2 is essential after nerve injury to allow remyelination and functional recovery. In summary, Zeb2 emerges as an “inhibitor of inhibitors,” a novel concept in Schwann cell development and nerve repair.
Neural Regeneration Research | 2017
Susanne Quintes; BastianG Brinkmann
Schwann cells, the myelinating glial cells of the peripheral nervous system are remarkably plastic after nerve trauma. Their transdifferentiation into specialized repair cells after injury shares some features with their development from the neural crest. Both processes are governed by a tightly regulated balance between activators and inhibitors to ensure timely lineage progression and allow re-maturation after nerve injury. Functional recovery after injury is very successful in rodents, however, in humans, lack of regeneration after nerve trauma and loss of function as the result of peripheral neuropathies represents a significant problem. Our understanding of the basic molecular machinery underlying Schwann cell maturation and plasticity has made significant progress in recent years and novel players have been discovered. While the transcriptional activators of Schwann cell development and nerve repair have been well defined, the mechanisms counteracting negative regulation of (re-)myelination are less well understood. Recently, transcriptional inhibition has emerged as a new regulatory mechanism in Schwann cell development and nerve repair. This mini-review summarizes some of the regulatory mechanisms controlling both processes and the novel concept of “inhibiting the inhibitors” in the context of Schwann cell plasticity.
Nature Neuroscience | 2016
Susanne Quintes; Bastian G. Brinkmann; Madlen Ebert; Franziska Fröb; Theresa Kungl; Friederike A Arlt; Victor Tarabykin; Danny Huylebroeck; Dies Meijer; Ueli Suter; Michael Wegner; Michael W. Sereda; Klaus-Armin Nave