Suvara K. Wattanapitayakul
Srinakharinwirot University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suvara K. Wattanapitayakul.
Pharmacology & Therapeutics | 2001
Suvara K. Wattanapitayakul; John Anthony Bauer
Despite some recent declines, cardiovascular disease (CVD) remains the major cause of death in the United States and worldwide. Most recent advances in the treatment of CVD states have been produced by inhibition of mechanisms involved in disease progress. Many studies conducted in the last decade have illustrated increased biological oxidative pathways during CVD in animals and humans. Thus, increased production of reactive oxygen species may be a unifying mechanism in CVD progression, and antioxidants may have therapeutic value in this setting. In this review we address the following questions: Do oxidative mechanisms play a role in CVD? Where do the oxidants come from? What are the relevant oxidative events? What are the therapeutic implications?
Trends in Pharmacological Sciences | 2001
Suvara K. Wattanapitayakul; Michael J. Mihm; Anthony P. Young; John Anthony Bauer
Vascular endothelial dysfunction is now recognized as a common phenomenon in an array of cardiovascular disorders. Production of nitric oxide via the endothelial isoform of nitric oxide synthase [eNOS (previously termed NOS3 or ecNOS)] is vital for a healthy endothelium; several polymorphic variations of the gene encoding eNOS (NOS3) are now known and have been investigated with respect to disease risk. Surprisingly, only approximately half of these studies have demonstrated significant associations between NOS3 polymorphisms and cardiovascular disease, and many reports are contradictory. Central issues include adequate statistical power, appropriateness of control cohorts, multigene interactions and plausible biological consequences. So far, the inconsistencies are not unique to the NOS3 polymorphisms, but probably represent the broad challenges in defining genetic aspects of complex disease processes.
Fitoterapia | 2008
Suvara K. Wattanapitayakul; Linda Chularojmontri; Angkana Herunsalee; Suphan Charuchongkolwongse; Nuchattra Chansuvanich
The ethanolic extract of Kaempferia parviflora (KP) rhizomes dose-dependently relaxed both aortic rings and ileum precontracted with phenylephrine and acethylcholine, respectively.
Bioorganic & Medicinal Chemistry Letters | 2013
Kingkan Sanphanya; Suvara K. Wattanapitayakul; Suwadee Phowichit; Valery V. Fokin; Opa Vajragupta
We report a novel VEGFR-2 inhibitor, developed by the back-to-front approach. Docking experiments indicated that the 3-chloromethylphenylurea motif of the lead compound occupied the back pocket of VEGFR-2 kinase. An attempt was made to enhance the binding affinity of 1 by expanding the structure to access the front pocket using a triazole linker. A library of 1,4-(disubstituted)-1H-1,2,3-triazoles were screened in silico, and one compound (VH02) was identified with an IC50 against VEGFR-2 of 0.56μM. VH02 showed antiangiogenic effects, inhibiting tube formation in HUVEC cells (EA.hy926) at 0.3μM, 13 times lower than its cytotoxic dose. These enzymatic and cellular activities suggest that VH02 has potential as a lead for further optimization.
Evidence-based Complementary and Alternative Medicine | 2013
Linda Chularojmontri; Orapin Gerdprasert; Suvara K. Wattanapitayakul
Citrus flavonoids have been shown to reduce cardiovascular disease (CVD) risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM) fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX-) induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid) were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH) levels. The changes in glutathione-S-transferase (GST) activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal) was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.
Evidence-based Complementary and Alternative Medicine | 2013
Linda Chularojmontri; Maneewan Suwatronnakorn; Suvara K. Wattanapitayakul
Endothelial dysfunction is the hallmark of impaired wound healing and increased risk of cardiovascular disease. Antioxidants from natural sources decrease oxidative stress and protect against cellular damage caused by reactive oxygen species (ROS). In this study, we examined the antioxidant constituents and capacity of Phyllanthus emblica L. (PE) fruit in freeze-dried power form. The pharmacological properties of PE were investigated using human umbilical vein endothelial cells (HUVECs) in the aspects of endothelial cell proliferation, nitric oxide (NO) production, wound healing, cell migration, in vitro angiogenesis, and VEGF gene expression. The ASC content of PE was 1.574% + 0.046% (w/w) as determined by HPLC and the total phenolic content was 36.1% ± 0.7% gallic acid equivalent when measured by Folin-Ciocalteu assay. The FRAP assay revealed a relatively high antioxidant capacity at 3,643 + 192.5 µmole/mg. PE at 0.1 to 10 µg/mL did not significantly influence endothelial cell proliferation, but at higher concentrations PE decreased cell survival to 62%. PE significantly promoted NO production, endothelial wound closure, endothelial sprouting, and VEGF mRNA expression. Therefore, PE is a candidate for antioxidant supplement that promotes endothelial function and restores wound healing competency.
Nutrients | 2014
Paiwan Buachan; Linda Chularojmontri; Suvara K. Wattanapitayakul
Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay) and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC). Short-term (48 h) co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL). CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2′,7′-dichlorodihydrofluorescein diacetate (DCDHF) while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction.
Bioorganic & Medicinal Chemistry Letters | 2012
Kingkan Sanphanya; Suvara K. Wattanapitayakul; Orawin Prangsaengtong; Michiko Jo; Keiichi Koizumi; Naotoshi Shibahara; Aroonsri Priprem; Valery V. Fokin; Opa Vajragupta
Novel urea derivatives of alkynes have been designed, synthesized, and evaluated as potential cancer therapeutics leads. The most active 1-((3-chloromethyl)phenyl)-3-prop-2-ynylurea (1) exhibited cytotoxic effect against HELA and MCF-7 cell lines with IC(50) values of 1.55 μM and 1.48 μM, respectively. Further investigation on tube formation assay in human vein umbilical cells (HUVEC) demonstrated that 1 and methyl 4-(3-(3-ethynylureido)benzyloxy) benzoate (6) possess antiangiogenic activity, with minimum effective dose of 25 nM (for 1) and 6.25 μM (for 6). The ED(50) of 1 and 6 were found to be 0.26 μM and 17.52 μM, respectively. The results from in vitro tyrosine kinase assay indicated the EGFR inhibition of 1 over other kinases (VEGFR2, FGFR1 and PDGFRβ). The cytotoxicity of 1 against EGFR overexpressing cell line A431 (IC(50) 36 nM) was comparable to that of erlotinib. The binding mode of 1 from docking simulation in the EGFR active site revealed that the urea motif formed hydrogen bonding with Lys745, Thr854 and Asp855 in hydrophobic pocket of EGFR. Compound 1 is considered as a potential lead for further optimization.
Diabetes and Vascular Disease Research | 2011
Mandar S. Joshi; Suvara K. Wattanapitayakul; Brandon L. Schanbacher; John Anthony Bauer
The functional relevance of NOS3 and ACE genetic variations to endothelial cell function is largely unstudied. Here we tested the functional relevance of the NOS3 (Glu298Asp) polymorphism and ACE (I/D) polymorphism in endothelial cells in vitro. Our hypothesis was that these genetic polymorphisms alter endothelial cell sensitivity to glucose and 3-nitrotyrosine (3NT). Genotyped HUVECs were incubated with glucose, free 3NT or a combination of these two toxicants. Significant differences in glucose-induced cell death and free 3NT-induced cell death were observed among the NOS3 genotypes. Combined glucose/3NT caused increased toxicity among the NOS3 genotypes. No differences were observed among the ACE genotypes in their responses to glucose/3NT. These data demonstrate that the NOS3 genotype may be an important predictor of, or be mechanistically involved in, endothelial vulnerability, whereas the ACE I/D genotype is apparently less important. Thus this NOS3 genetic variation may play a role in vulnerability to endothelium-dependent diabetic vascular complications.
Molecules | 2016
Suwadee Phowichit; Miho Kobayashi; Yuriko Fujinoya; Yasufumi Sato; Kingkarn Sanphanya; Opa Vajragupta; Linda Chularojmontri; Suvara K. Wattanapitayakul
Vascular endothelial growth factor receptor 2 (VEGFR2) is a vital target for therapeutic intervention in cancer. We have recently described a computer-based drug design for a small molecule VEGFR2 inhibitor named VH02 (1-((1-(1H-indazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(3-chloromethylphenyl)urea). This study aimed to further explore the anti-angiogenic activity of VH02 both in vitro and in vivo. The in vitro assays include cell viability, capillary-like tube formation, MMP activity, and western blot analyses of signaling through VEGFR2 while the in vivo anti-angiogenic response were performed to evaluate the effect on vascularization in Matrigel plug applied in C57BL/6L mice. VH02 reduced angiogenesis behavior of EA.hy926 including cell viability, migration, adhesion, capillary-like tube formation, and MMP-2 activity induced by VEGF. Furthermore, VH02 regulated angiogenesis by directly inhibiting VEGFR2 on Tyr1175 signaling pathway leading to the inhibition of Akt-mediated cell survival and migration. Disruption of phosphorylation at VEGFR2-Tyr1175 by VH02 abolished FAK-Tyr397 signaling but not phosphorylation of p38 MAPK. This suggests that blockade of FAK by VH02 apparently associated with reduction of endothelial cell motility. Actin cytoskeleton rearrangement was diminished by VH02 in human endothelial cells. The anti-angiogenic effect of VH02 was confirmed in the in vivo model, revealing the reduction of vascular density in Matrigel plug after VH02 treatment. Additionally, the pericyte-like cells surrounding blood vessels in the plugs were significantly reduced as well as vascular density and p-Akt intensity. Our findings indicate that VH02 successfully inhibits VEGF-induced angiogenesis both in vitro and in vivo models. The compound could be further developed as an antiangiogenesis agent for cancer therapy.