Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suwako Fujigaki is active.

Publication


Featured researches published by Suwako Fujigaki.


European Journal of Immunology | 2001

Lipopolysaccharide induction of indoleamine 2,3‐dioxygenase is mediated dominantly by an IFN‐γ‐independent mechanism

Suwako Fujigaki; Kuniaki Saito; Kenji Sekikawa; Shigenobu Tone; Osamu Takikawa; Hidehiko Fujii; Hisayasu Wada; Akio Noma; Mitsuru Seishima

Indoleamine 2,3‐dioxygenase (IDO) is a rate‐limiting enzyme in the L‐tryptophan‐kynurenine pathway, which converts an essential amino acid, L‐tryptophan, to N‐formylkynurenine. It has been speculated that IFN‐γ is a dominant IDO inducer in vivo. The present study used IFN‐γ or TNF‐α gene‐disrupted mice and IFN‐γ antibody‐treated mice to demonstrate that lipopolysaccharide (LPS)‐induced systemic IDO is largely dependent on TNF‐α rather than IFN‐γ. IFN‐γ‐independent IDO induction was also demonstrated in vitro with LPS‐stimulated monocytic THP‐1 cells. These findings clearly indicate that there is an IFN‐γ‐independent mechanism of IDO induction in addition to the IFN‐γ‐dependent mechanism.


Infection and Immunity | 2002

L-tryptophan-L-kynurenine pathway metabolism accelerated by Toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase.

Suwako Fujigaki; Kuniaki Saito; Masao Takemura; Naoya Maekawa; Yasuhiro Yamada; Hisayasu Wada; Mitsuru Seishima

ABSTRACT l-Tryptophan degradation by indoleamine 2,3-dioxygenase (IDO) might have an important role in gamma interferon (IFN-γ)-induced antimicrobial effects. In the present study, the effects of Toxoplasmagondii infection on IDO were investigated by using wild-type and IFN-γ-gene-deficient (knockout) (IFN-γ KO) mice. In wild-type C57BL/6J mice, enzyme activities and mRNA levels for IDO in both lungs and brain were markedly increased and lung l-tryptophan concentrations were dramatically decreased following T. gondii infection. In contrast, these metabolic changes did not occur in T. gondii-infected IFN-γ KO mice or in uninfected IFN-γ KO mice. The levels of inducible nitric oxide synthase (iNOS) induction in infected IFN-γ KO mice were high in lungs and low in brain compared to those in infected wild-type mice. The extent of increased mRNA expression of T. gondii surface antigen gene 2 (SAG2) induced in lungs and brain by T. gondii infection was significantly enhanced in IFN-γ KO mice compared to wild-type mice on day 7 postinfection. Treatment with N-nitro-l-arginine methyl ester, an iNOS inhibitor, increased the levels of SAG2 mRNA in brain but not in lungs and of plasma l-kynurenine after T. gondii infection. This in vivo study provides evidence that l-tryptophan depletion caused by T. gondii is directly mediated by IFN-γ in the lungs, where iNOS is not induced by IFN-γ. This study suggests that there is an antitoxoplasma mechanism of cross-regulation between iNOS and IDO and that the expression of the main antiparasite effector mechanisms for iNOS and/or IDO may vary among tissues.


Circulation | 2001

Tumor Necrosis Factor-α (TNF-α) Plays a Protective Role in Acute Viral Myocarditis in Mice A Study Using Mice Lacking TNF-α

Hisayasu Wada; Kuniaki Saito; Tsugiyasu Kanda; Isao Kobayashi; Hidehiko Fujii; Suwako Fujigaki; Naoya Maekawa; Hisato Takatsu; Hisayoshi Fujiwara; Kenji Sekikawa; Mitsuru Seishima

BACKGROUND It has been reported that tumor necrosis factor-alpha (TNF-alpha) is expressed in the heart with viral myocarditis and that its expression aggravates the condition. The pathophysiological effects of TNF-alpha on viral myocarditis, however, have not been fully elucidated. METHODS AND RESULTS To investigate the role of TNF-alpha in the progression of viral myocarditis, we used TNF-alpha gene-deficient mice (TNF-alpha(-/-)) and induced acute myocarditis by infection with encephalomyocarditis virus (EMCV). The survival rate of TNF-alpha(-/-) mice after EMCV infection was significantly lower than that of TNF-alpha(+/+) mice (0% versus 67% on day 14). Injection of recombinant human TNF-alpha (0.2 to 4.0 microg/mouse IV) improved the survival of TNF-alpha(-/-) mice in a dose-dependent manner, indicating that TNF-alpha is essential for protection against viral myocarditis. The levels of viral titer and viral genomic RNA of EMCV in the myocardium were significantly higher in TNF-alpha(-/-) than in TNF-alpha(+/+) mice. Histopathological examination showed that the inflammatory changes of the myocardium were less marked in TNF-alpha(-/-) than in TNF-alpha(+/+) mice. Immunohistochemical analysis revealed that the levels of immunoreactivity of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the myocardium were decreased in TNF-alpha(-/-) mice compared with TNF-alpha(+/+) mice. CONCLUSIONS These observations suggested that TNF-alpha is necessary for adhesion molecule expression and to recruit leukocytes to inflammatory sites, and thus, the lack of this cytokine resulted in failure of elimination of infectious agents. We concluded that TNF-alpha plays a protective role in the acute stage of viral myocarditis.Background—It has been reported that tumor necrosis factor-α (TNF-α) is expressed in the heart with viral myocarditis and that its expression aggravates the condition. The pathophysiological effects of TNF-α on viral myocarditis, however, have not been fully elucidated. Methods and Results—To investigate the role of TNF-α in the progression of viral myocarditis, we used TNF-α gene–deficient mice (TNF-α−/−) and induced acute myocarditis by infection with encephalomyocarditis virus (EMCV). The survival rate of TNF-α−/− mice after EMCV infection was significantly lower than that of TNF-α+/+ mice (0% versus 67% on day 14). Injection of recombinant human TNF-α (0.2 to 4.0 μg/mouse IV) improved the survival of TNF-α−/− mice in a dose-dependent manner, indicating that TNF-α is essential for protection against viral myocarditis. The levels of viral titer and viral genomic RNA of EMCV in the myocardium were significantly higher in TNF-α−/− than in TNF-α+/+ mice. Histopathological examination showed that the inflam...


Annals of Clinical Biochemistry | 2001

3-Hydroxyanthranilic acid, an L-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-γ

Toshiko Morita; Kuniaki Saito; Masao Takemura; Naoya Maekawa; Suwako Fujigaki; Hidehiko Fujii; Hisayasu Wada; Shoji Takeuchi; Akio Noma; Mitsuru Seishima

3-Hydroxyanthranilic acid (3-HAA), a metabolite of L-tryptophan, accumulates in monocyte-derived cells (THP-1),but not in other celllines tested(MRC9, H4, U373MG, Wil-NS), following immune stimulation that induces indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme in the L-tryptophan-kynurenine pathway. We examined whether metabolites of the L-tryptophan-kynurenine pathway act to induce apoptosis in monocytes/macrophages. Of the L-tryptophan metabolites tested, only 3-HAA at a concentration of 200µmol/L was found to induce apoptosis in THP-1 and U937 cells. The addition of ferrous or manganese ions further enhanced apoptosis and free radical formation by 3-HAA in these two types of cells. The apoptotic response induced by 3-HAA was significantly attenuated by the addition of antioxidant, α-tocopherol or Trolox (a water-soluble analogue of vitamin E), and the xanthine oxidase inhibitor, allopurinol. In addition, the 3-HAA-induced apoptotic response was slightly attenuated by catalase, but not by superoxide dismutase (SOD), indicating that generation of hydrogen peroxide is involved in this response. Interferon-γ (IFN-γ), an inducer of IDO, potently induced apoptosis in THP-1 cells, but not in U937 cells, in the presence of ferrous or manganese ions. This different susceptibility to apoptosis inducer between THP-1 and U937 cells may depend on the capacity of the cells for 3-HAA synthesis following IDO induction by IFN-γ. Furthermore, apoptosis was suppressed by cycloheximide in THP-1 cells, suggesting that newly synthesized proteins may be essential for apoptotic events. These results suggest that 3-HAA induces apoptosis in monocytes/macrophages under inflammatory or other pathophysiological conditions.


Journal of Immunology | 2006

Nitration and Inactivation of IDO by Peroxynitrite

Hidetsugu Fujigaki; Kuniaki Saito; Felix Lin; Suwako Fujigaki; Kanako Takahashi; Brian M. Martin; Cai Y. Chen; Junichi Masuda; Jeffrey A. Kowalak; Osamu Takikawa; Mitsuru Seishima; Sanford P. Markey

IDO induction can deplete l-tryptophan in target cells, an effect partially responsible for the antimicrobial activities and antiallogeneic T cell responses of IFN-γ in human macrophages, dendritic cells, and bone marrow cells. l-Tryptophan depletion and NO production are both known to have an antimicrobial effect in macrophages, and the interaction of these two mechanisms is unclear. In this study we found that IDO activity was inhibited by the peroxynitrite generator, 3-(4-morpholinyl)sydnonimine, in PMA-differentiated cytokine-induced THP-1 (acute monocytic leukemia) cells and IFN-γ-stimulated PBMCs, whereas IDO protein expression was unaffected compared with that in untreated cells. Nitrotyrosine was detected in immunoprecipitated (IP)-IDO from PMA-differentiated cytokine-induced THP-1 cells treated with 3-(4-morpholinyl)sydnonimine, but not from untreated cells. Treatment of IP-IDO and recombinant IDO (rIDO) with peroxynitrite significantly decreased enzyme activity. Nitrotyrosine was detected in both peroxynitrite-treated IP-IDO and rIDO, but not in either untreated IP-IDO or rIDO. Peptide analysis by liquid chromatography/electrospray ionization and tandem mass spectrometry demonstrated that Tyr15, Tyr345, and Tyr353 in rIDO were nitrated by peroxynitrite. The levels of Tyr nitration and the inhibitory effect of peroxynitrite on IDO activity were significantly reduced in the Tyr15-to-Phe mutant. These results indicate that IDO is nitrated and inactivated by peroxynitrite and that nitration of Tyr15 in IDO protein is the most important factor in the inactivation of IDO.


Advances in Experimental Medicine and Biology | 1999

L-Tryptophan-Kynurenine Pathway Metabolite 3-Hydroxyanthranilic Acid Induces Apoptosis in Macrophage-Derived Cells Under Pathophysiological Conditions

Toshiko Morita; Kuniaki Saito; Masao Takemura; Naoya Maekawa; Suwako Fujigaki; Hidehiko Fujii; Hisayasu Wada; Shoji Takeuchi; Akio Noma; Mitsuru Seishima

Accumulation of L-kynurenine and 3-hydroxyanthranilic acid (3HAA) occurs in the monocyte-derived cells following immune stimulation, and may derive from L-tryptophan following induction of indoleamine-2,3-dioxygenase. In the present study, we evaluate the possibility that 3HAA acts as an endogenous inducer of monocyte/macrophage apoptosis. Supplementation with 200 microM of 3HAA, but not other L-tryptophan metabolites tested, significantly increased the number of apoptotic cells in both THP-1 and U937 cells. Catalase, superoxide dismutase and manganese ions markedly enhanced apoptosis in the presence of 3HAA in these cells. The present results suggest that 3HAA induces the macrophage/monocyte apoptosis under certain conditions, which may be relevant to pathophysiology of inflammatory conditions.


Advances in Experimental Medicine and Biology | 2003

The mechanism of interferon-gamma induced anti Toxoplasma gondii by indoleamine 2,3-dioxygenase and/or inducible nitric oxide synthase vary among tissues.

Suwako Fujigaki; Masao Takemura; Hidetsugu Hamakawa; Mitsuru Seishima; Kuniaki Saito

L-Tryptophan degradation by indoleamine 2,3-dioxygenase (IDO) induction and reactive nitrogen intermediates produced by inducible nitric oxide synthase (iNOS) induction are important factors for IFN-gamma-induced anti-toxoplasma activities. In the present study, the effects of acute Toxoplasma gondii (T. gondii) infection on IDO and iNOS were investigated using wild-type (WT) and IFN-gamma gene-deficient (IFN-gamma KO) mice. In the WT C57BL/6J mice, enzyme activities and mRNA levels of IDO in both lung and brain were markedly increased, and lung L-tryptophan concentrations were dramatically decreased following infection. In contrast, these metabolic changes did not occur in infected IFN-gamma KO mice. The level of iNOS induction in the infected IFN-gamma KO mice was high in lung and low in brain compared to that in infected WT mice. The extent of increased mRNA expression of T. gondii surface antigen gene 2 (SAG2) in lung and brain induced by infection was significantly enhanced in the IFN-gamma KO mice compared to that in WT mice. Treatment with N-nitro-L-arginine methyl ester, an iNOS inhibitor, increased the levels of SAG2 mRNA in brain, but not in lung following infection. This in vivo study provides evidence that L-tryptophan depletion caused by T. gondii is directly mediated by IFN-gamma in the lung, where iNOS is not induced by IFN-gamma. This study suggests that there is an anti-toxoplasma mechanism of cross-regulation between iNOS and IDO and that the expression of main anti-parasite effector mechanisms of iNOS and/or IDO may vary among tissues.


Journal of Proteome Research | 2013

A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12.

Michael Brad Strader; William Judson Hervey; Nina Costantino; Suwako Fujigaki; Cai Yun Chen; Ayca Akal-Strader; Chibueze A. Ihunnah; Anthony J. Makusky; Donald L. Court; Sanford P. Markey; Jeffrey A. Kowalak

The bacterial ribosomal protein S12 contains a universally conserved D88 residue on a loop region thought to be critically involved in translation due to its proximal location to the A site of the 30S subunit. While D88 mutants are lethal this residue has been found to be post-translationally modified to β-methylthioaspartic acid, a post-translational modification (PTM) identified in S12 orthologs from several phylogenetically distinct bacteria. In a previous report focused on characterizing this PTM, our results provided evidence that this conserved loop region might be involved in forming multiple proteins-protein interactions ( Strader , M. B. ; Costantino , N. ; Elkins , C. A. ; Chen , C. Y. ; Patel , I. ; Makusky , A. J. ; Choy , J. S. ; Court , D. L. ; Markey , S. P. ; Kowalak , J. A. A proteomic and transcriptomic approach reveals new insight into betamethylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 2011 , 10 , M110 005199 ). To follow-up on this study, the D88 containing loop was probed to identify candidate binders employing a two-step complementary affinity purification strategy. The first involved an endogenously expressed S12 protein containing a C-terminal tag for capturing S12 binding partners. The second strategy utilized a synthetic biotinylated peptide representing the D88 conserved loop region for capturing S12 loop interaction partners. Captured proteins from both approaches were detected by utilizing SDS-PAGE and one-dimensional liquid chromatography-tandem mass spectrometry. The results presented in this report revealed proteins that form direct interactions with the 30S subunit and elucidated which are likely to interact with S12. In addition, we provide evidence that two proteins involved in regulating ribosome and/or mRNA transcript levels under stress conditions, RNase R and Hfq, form direct interactions with the S12 conserved loop, suggesting that it is likely part of a protein binding interface.


Neuroscience Letters | 2007

Changes in neuronal protein expression in LP-BM5-infected mice

Kanako Takahashi; Kuniaki Saito; Junichi Masuda; Suwako Fujigaki; Masao Takemura; Hiroyasu Ito; Mitsuru Seishima

Murine acquired immunodeficiency syndrome (MAIDS) induced by LP-BM5 murine leukemia virus is used as a model of human immunodeficiency virus (HIV)-related neurologic dysfunction. Mice infected with LP-BM5 have mnemonic abnormalities (i.e., spontaneous alternation behavior in the Y-maze and performance in the Morris water maze) and biochemical alternations (i.e., cytokines, platelet-activating factor, quinolinate, glutamate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) that produce neurologic symptoms similar to those observed in HIV-related neurologic dysfunction. To identify proteins associated with dysmnesia in the MAIDS model, we examined the expression of neuronal proteins in LP-BM5-infected mice using two-dimensional polyacrylamide gel electrophoresis (2-DE). Neuronal protein expression in LP-BM5-infected mice was compared with that in non-infected mice using the Image Master 2D. We detected approximately 800 protein spots, of which 35 were distinguishable between non-infected and LP-BM5-infected mice. Most of these spots were downregulated in LP-BM5-infected mice. Three of the spots were identified as 14-3-3 protein zeta/delta, synapsin 2 and protein disulfide isomerase using a capillary nanoliquid chromatography tandem mass spectrometric system. We verified the expression levels of these proteins by Western blot. Analysis of these 35 spots could provide insight into mechanisms of dysmnesia in the MAIDS model of HIV-related neuronal dysfunction.


Advances in Experimental Medicine and Biology | 2003

Dietary Linoleic Acid Suppresses Gene Expression of Rat Liver α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase (ACMSD) and Increases Quinolinic Acid in Serum

Yukari Egashira; Makiko Sato; Atsushi Tanabe; Kuniaki Saito; Suwako Fujigaki; Hiroo Sanada

Hepatic ACMSD [EC4.1.1.45] plays a key role in regulating NAD biosynthesis from tryptophan. We previously reported that ingestion of polyunsaturated fatty acids by rats leads to a decrease in their hepatic ACMSD activity. We purified ACMSD and cloned cDNA encoding rat ACMSD. Therefore, in this study, we examined whether dietary linoleic acid altered ACMSD gene expression and its protein level. Moreover we measured the tryptophan catabolite quinolinic acid level in rats.

Collaboration


Dive into the Suwako Fujigaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuniaki Saito

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge