Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzana K. Straus is active.

Publication


Featured researches published by Suzana K. Straus.


Biomaterials | 2011

The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides

Guangzheng Gao; Dirk Lange; Kai Hilpert; Jason Kindrachuk; Yuquan Zou; John T.J. Cheng; Mehdi Kazemzadeh-Narbat; Kai Yu; Rizhi Wang; Suzana K. Straus; Donald E. Brooks; Ben H. Chew; Robert E. W. Hancock; Jayachandran N. Kizhakkedathu

Bacterial colonization on implant surfaces and subsequent infections are one of the most common reasons for the failure of many indwelling devices. Several approaches including antimicrobial and antibiotic-eluting coatings on implants have been attempted; however, none of these approaches succeed in vivo. Here we report a polymer brush based implant coating that is non-toxic, antimicrobial and biofilm resistant. These coating consists of covalently grafted hydrophilic polymer chains conjugated with an optimized series of antimicrobial peptides (AMPs). These tethered AMPs maintained excellent broad spectrum antimicrobial activity in vitro and in vivo. We found that this specially structured robust coating was extremely effective in resisting biofilm formation, and that the biofilm resistance depended on the nature of conjugated peptides. The coating had no toxicity to osteoblast-like cells and showed insignificant platelet activation and adhesion, and complement activation in human blood. Since such coatings can be applied to most currently used implant surfaces, our approach has significant potential for the development of infection-resistant implants.


PLOS Pathogens | 2014

Broad-Spectrum Anti-biofilm Peptide That Targets a Cellular Stress Response

César de la Fuente-Núñez; Fany Reffuveille; Evan F. Haney; Suzana K. Straus; Robert E. W. Hancock

Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in cells. Targeting (p)ppGpp represents a new approach against biofilm-related drug resistance.


Protein Science | 2009

Expression, purification, and activities of full‐length and truncated versions of the integral membrane protein Vpu from HIV‐1

Che Ma; Francesca M. Marassi; David H. Jones; Suzana K. Straus; Stephan Bour; Klaus Strebel; Ulrich S. Schubert; Myrta Oblatt-Montal; Mauricio Montal; Stanley J. Opella

Vpu is an 81‐residue accessory protein of HIV‐1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV‐1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu‐mediated enhancement of the virus release rate from HIV‐1‐infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu‐induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full‐length Vpu (residues 2–81). Vpu2–37 encompasses the N‐terminal transmembrane α‐helix; Vpu2–51 spans the N‐terminal transmembrane helix and the first cytoplasmic α‐helix; Vpu28–81 includes the entire cytoplasmic domain containing the two C‐terminal amphipathic α‐helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid‐state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid‐state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane α‐helix. The C‐terminal α‐helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.


Chemistry & Biology | 2010

Structural Studies of a Peptide with Immune Modulating and Direct Antimicrobial Activity

Michal Wieczorek; Håvard Jenssen; Jason Kindrachuk; Walter R. P. Scott; Melissa Elliott; Kai Hilpert; John T.J. Cheng; Robert E. W. Hancock; Suzana K. Straus

The structure and function of the synthetic innate defense regulator peptide 1018 was investigated. This 12 residue synthetic peptide derived by substantial modification of the bovine cathelicidin bactenecin has enhanced innate immune regulatory and moderate direct antibacterial activities. The solution state NMR structure of 1018 in zwitterionic dodecyl phosphocholine (DPC) micelles indicated an α-helical conformation, while secondary structures, based on circular dichroism measurements, in anionic sodium dodecyl sulfate (SDS) and phospholipid vesicles (POPC/PG in a 1:1 molar ratio) and simulations revealed that 1018 can adopt a variety of folds, tailored to its different functions. The structural data are discussed in light of the ability of 1018 to potently induce chemokine responses, suppress the LPS-induced TNF-α response, and directly kill both Gram-positive and Gram-negative bacteria.


Journal of Biomolecular NMR | 1998

Experiments and strategies for the assignment of fully 13C/15N-labelled polypeptides by solid state NMR.

Suzana K. Straus; Tobias Bremi; R. R. Ernst

High-resolution heteronuclear NMR correlation experiments and strategies are proposed for the assignment of fully13 C/15N-labelled polypeptides in the solid state. By the combination of intra-residue and inter-residue13 C-15N correlation experiments with13 C-13C spin-diffusion studies, it becomes feasible to partially assign backbone and side-chain resonances in solid proteins. The performance of sequences using 15N instead of13 C detection is evaluated regarding sensitivity and resolution for a labelled dipeptide (L-Val-L-Phe). The techniques are used for a partial assignment of the 15N and 13C resonances in human ubiquitin.


European Biophysics Journal | 2008

Effect of divalent cations on the structure of the antibiotic daptomycin

Steven W. Ho; David Jung; Jennifer R. Calhoun; James D. Lear; Mark Okon; Walter R. P. Scott; Robert E. W. Hancock; Suzana K. Straus

Daptomycin, a cyclic anionic lipopeptide antibiotic, whose three-dimensional structure was recently solved using solution state NMR (Ball et al. 2004; Jung et al. 2004; Rotondi and Gierasch 2005), requires calcium for function. To date, the exact nature of the interaction between divalent cations, such as Ca2+ or Mg2+, has not been fully characterized. It has, however, been suggested that addition of Ca2+ to daptomycin in a 1:1 molar ratio induces aggregation. Moreover, it has been suggested that certain residues, e.g. Asp3 and Asp7, which are essential for activity (Grunewald et al. 2004; Kopp et al. 2006), may also be important for Ca2+ binding (Jung et al. 2004). In this work, we have tried: (1) to further pinpoint how Ca2+ affects daptomycin structure/oligomerization using analytical ultracentrifugation; and (2) to determine whether a specific calcium binding site exists, based on one-dimensional 13C NMR spectra and molecular dynamics (MD) simulations. The centrifugation results indicated that daptomycin formed micelles of between 14 and 16 monomers in the presence of a 1:1 molar ratio of Ca2+ and daptomycin. The 13C NMR data indicated that addition of calcium had a significant effect on the Trp1 and Kyn13 residues, indicating that either calcium binds in this region or that these residues may be important for oligomerization. Finally, the molecular dynamics simulation results indicated that the conformational change of daptomycin upon calcium binding might not be as significant as originally proposed. Similar studies on the divalent cation Mg2+ are also presented. The implication of these results for the biological function of daptomycin is discussed.


Chemistry and Physics of Lipids | 2008

Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes.

David Jung; Jon Paul Powers; Suzana K. Straus; Robert E. W. Hancock

Daptomycin is a cyclic anionic lipopeptide with an antibiotic activity that is completely dependent on the presence of calcium (as Ca2+). In a previous study [Jung et al., 2004. Chem. Biol. 11, 949-957], it was concluded that daptomycin underwent two Ca2+-dependent structural transitions, whereby the first transition was solely dependent on Ca2+, while the second transition was dependent on both Ca2+ and the presence of negatively charged lipids that allowed daptomycin to insert into and perturb bilayer membranes with acidic character. Differences in the interaction of daptomycin with acidic and neutral membranes were further investigated by spectroscopic means. The lack of quenching of intrinsic fluorescence by the water-soluble quencher, KI, confirmed the insertion of the daptomycin Trp residue into the membrane bilayer, while the kynurenine residue was inaccessible even in an aqueous environment. Differential scanning calorimetry (DSC) indicated that the binding of daptomycin to neutral bilayers occurred through a combination of electrostatic and hydrophobic interactions, while the binding of daptomycin to bilayers containing acidic lipids primarily involved electrostatic interactions. The binding of daptomycin to acidic membranes led to the induction of non-lamellar lipid phases and membrane fusion.


Biophysical Journal | 2009

Effect of Membrane Composition on Antimicrobial Peptides Aurein 2.2 and 2.3 From Australian Southern Bell Frogs

John T.J. Cheng; John D. Hale; Melissa Elliot; Robert E. W. Hancock; Suzana K. Straus

The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.


Antimicrobial Agents and Chemotherapy | 2011

Mechanism of Action and Limited Cross-Resistance of New Lipopeptide MX-2401

Evelina Rubinchik; Tanja Schneider; Melissa Elliott; Walter R. P. Scott; Jinhe Pan; C. Anklin; Haiyan Yang; Dominique Dugourd; Anna Müller; K. Gries; Suzana K. Straus; Hans-Georg Sahl; Robert E. W. Hancock

ABSTRACT MX-2401 is a semisynthetic calcium-dependent lipopeptide antibiotic (analogue of amphomycin) in preclinical development for the treatment of serious Gram-positive infections. In vitro and in vivo, MX-2401 demonstrates broad-spectrum bactericidal activity against Gram-positive organisms, including antibiotic-resistant strains. The objective of this study was to investigate the mechanism of action of MX-2401 and compare it with that of the lipopeptide daptomycin. The results indicated that although both daptomycin and MX-2401 are in the structural class of Ca2+-dependent lipopeptide antibiotics, the latter has a different mechanism of action. Specifically, MX-2401 inhibits peptidoglycan synthesis by binding to the substrate undecaprenylphosphate (C55-P), the universal carbohydrate carrier involved in several biosynthetic pathways. This interaction resulted in inhibition, in a dose-dependent manner, of the biosynthesis of the cell wall precursors lipids I and II and the wall teichoic acid precursor lipid III, while daptomycin had no significant effect on these processes. MX-2401 induced very slow membrane depolarization that was observed only at high concentrations. Unlike daptomycin, membrane depolarization by MX-2401 did not correlate with its bactericidal activity and did not affect general membrane permeability. In contrast to daptomycin, MX-2401 had no effect on lipid flip-flop, calcein release, or membrane fusion with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (POPG) liposomes. MX-2401 adopts a more defined structure than daptomycin, presumably to facilitate interaction with C55-P. Mutants resistant to MX-2401 demonstrated low cross-resistance to other antibiotics. Overall, these results provided strong evidence that the mode of action of MX-2401 is unique and different from that of any of the approved antibiotics, including daptomycin.


Journal of Biomolecular NMR | 2003

Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments.

Suzana K. Straus; Walter R. P. Scott; Anthony Watts

The effect of time and spatial averaging on 15N chemical shift/1H-15N dipolar correlation spectra, i.e., PISEMA spectra, of α-helical membrane peptides and proteins is investigated. Three types of motion are considered: (a) Librational motion of the peptide planes in the α-helix; (b) rotation of the helix about its long axis; and (c) wobble of the helix about a nominal tilt angle. A 2ns molecular dynamics simulation of helix D of bacteriorhodopsin is used to determine the effect of librational motion on the spectral parameters. For the time averaging, the rotation and wobble of this same helix are modelled by assuming either Gaussian motion about the respective angles or a uniform distribution of a given width. For the spatial averaging, regions of possible 15N chemical shift/1H-15N dipolar splittings are computed for a distribution of rotations and/or tilt angles of the helix. The computed spectra show that under certain motional modes the 15N chemical shift/1H-15N dipolar pairs for each of the residues do not form patterns which mimic helical wheel patterns. As a result, the unambiguous identification of helix tilt and helix rotation without any resonance assignments or on the basis of a single assignment may be difficult.

Collaboration


Dive into the Suzana K. Straus's collaboration.

Top Co-Authors

Avatar

Walter R. P. Scott

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Robert E. W. Hancock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

John T.J. Cheng

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Melissa Elliott

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Hale

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Prashant Kumar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jason Kindrachuk

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Tait

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge