Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suzanne Chiu is active.

Publication


Featured researches published by Suzanne Chiu.


Toxicological Sciences | 2013

In ovo effects of two organophosphate flame retardants, TCPP and TDCPP, on pipping success, development, mRNA expression and thyroid hormone levels in chicken embryos

Amani Farhat; Doug Crump; Suzanne Chiu; Kim L. Williams; Robert J. Letcher; Lewis T. Gauthier; Sean W. Kennedy

Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) are organic flame retardants detected in the environment and biota for which avian toxicological data are limited. In this study, domestic chicken eggs were injected with TCPP or TDCPP (maximum dose = 51,600 and 45,000ng/g egg, respectively) to determine dose-dependent effects on pipping success, development, hepatic messenger RNA (mRNA) expression levels of genes associated with xenobiotic metabolism and the thyroid hormone (TH) pathway, and TH levels following 20-22 days of incubation. Neither compound reduced pipping success; however, TCPP significantly delayed pipping at 9240 and 51,600ng/g and reduced tarsus length at 51,600ng/g. TDCPP exposure resulted in significant decreases in head plus bill length, embryo mass, and gallbladder size at 45,000ng/g and reduced plasma free T4 levels at 7640ng/g. Type I deiodinase, liver fatty acid-binding protein, and cytochrome P450 (CYP) 3A37 mRNA levels were significantly induced by TCPP, whereas TDCPP induced CYP3A37 and CYP2H1. Chemical analysis of egg contents at incubation days 0, 5, 11, 18, and 19 revealed that > 92% of the injected TCPP or TDCPP concentration was detectable up to day 5; however, < 1% was detected by day 19. The observed phenotypic responses to TCPP and TDCPP exposure may be associated with disruption of the TH axis, which is critical for normal growth and development in birds. The effects of TDCPP on the gallbladder indicate that the disturbance of lipid metabolism is a likely mechanism of toxicity.


Toxicological Sciences | 2012

Effects of Tris(1,3-dichloro-2-propyl) phosphate and Tris(1-chloropropyl) phosphate on Cytotoxicity and mRNA Expression in Primary Cultures of Avian Hepatocytes and Neuronal Cells

Doug Crump; Suzanne Chiu; Sean W. Kennedy

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloropropyl) phosphate (TCPP) belong to a group of chemicals collectively known as triester organophosphate flame retardants (OPFRs). OPFRs are used in a wide range of consumer products and have been detected in biota, including free-living avian species; however, data on toxicological and molecular effects of exposure are limited. An in vitro screening approach was used to compare concentration-dependent effects of TDCPP and TCPP on cytotoxicity and messenger RNA (mRNA) expression in cultured hepatocytes and neuronal cells derived from embryonic chickens. TDCPP was toxic to hepatocytes (LC₅₀ = 60.3 ± 45.8μM) and neuronal cells (LC₅₀ = 28.7 ± 19.1μM), whereas TCPP did not affect viability in either cell type up to the highest concentration administered, 300μM. Real-time reverse transcription-PCR revealed alterations in mRNA abundance of genes associated with phase I and II metabolism, the thyroid hormone (TH) pathway, lipid regulation, and growth in hepatocytes. None of the transcripts measured in neuronal cells (D2, D3, RC3, and Oct-1) varied in response to TDCPP or TCPP exposure. Exposure to ≥ 10μM TDCPP and TCPP resulted in significant upregulation of CYP2H1 (4- to 8-fold), CYP3A37 (13- to 127-fold), and UGT1A9 (3.5- to 7-fold) mRNA levels. Transthyretin was significantly downregulated more than twofold by TCPP at 100μM; however, TDCPP did not alter its expression. Liver fatty acid-binding protein, TH-responsive spot 14-α, and insulin-like growth factor-1 were all downregulated (up to 10-fold) in hepatocytes exposed to ≥ 0.01μM TDCPP and TCPP. Taken together, our results indicate that genes associated with xenobiotic metabolism, the TH pathway, lipid regulation, and growth are vulnerable to TDCPP and TCPP administration in cultured avian hepatocytes. The mRNA expression data were similar to those from a previous study with hexabromocyclododecane.


Toxicological Sciences | 2008

Effects of Hexabromocyclododecane and Polybrominated Diphenyl Ethers on mRNA Expression in Chicken (Gallus domesticus) Hepatocytes

Doug Crump; Suzanne Chiu; Caroline Egloff; Sean W. Kennedy

Hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are additive flame retardants used in a wide range of consumer products. Both compounds have been detected in free-living avian species, but toxicological and molecular end points of exposure are limited. An in vitro approach was used to compare concentration-dependent effects of HBCD and the commercial penta-brominated diphenyl ether mixture DE-71 on cytotoxicity and mRNA expression in cultured hepatocytes derived from embryonic chickens. Neither HBCD-alpha, HBCD-technical mixture (TM), nor DE-71 effected hepatocyte viability at the highest concentrations assessed (30-100 microM). Real-time RT-PCR assays were developed to quantify changes in mRNA abundance of genes associated with chicken xenobiotic-sensing orphan nuclear receptor activation, the thyroid hormone (TH) pathway, and lipid regulation. Exposure to >or= 1 microM HBCD-alpha and HBCD-TM resulted in significant upregulation of cytochrome P450 (CYP) 2H1 (fourfold to sevenfold) and CYP3A37 (5- to 30-fold) at 24 and 36 h. In contrast, 30 microM DE-71 caused a twofold increase of CYP2H1 only. UGT1A9 expression was only upregulated by HBCD-alpha to a maximum of fourfold at >or= 1 microM. Transthyretin, thyroid hormone-responsive spot 14-alpha, and liver fatty acid-binding protein were all significantly downregulated (up to sevenfold) for cells exposed to >or= 1 microM HBCD-alpha and HBCD-TM. DE-71 also downregulated these three target genes twofold to fivefold at concentrations >or= 3 microM. Taken together, our results indicate that xenobiotic-metabolizing enzymes and genes associated with the TH pathway and lipid regulation are vulnerable to HBCD and DE-71 administration in cultured avian hepatocytes and might be useful molecular markers of exposure.


Toxicology and Applied Pharmacology | 2014

Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos

Amani Farhat; Julie K. Buick; Andrew Williams; Carole L. Yauk; Jason M. O'Brien; Doug Crump; Kim L. Williams; Suzanne Chiu; Sean W. Kennedy

We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The gene expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2011

The effects of Dechlorane Plus on toxicity and mRNA expression in chicken embryos: a comparison of in vitro and in ovo approaches.

Doug Crump; Suzanne Chiu; Lewis T. Gauthier; Nathan J. Hickey; Robert J. Letcher; Sean W. Kennedy

Dechlorane Plus (DP) is an additive chlorinated flame retardant comprising two major isomers, syn- and anti-DP, that is used in a variety of commercial/industrial products. It has been detected in biotic and abiotic matrices including the eggs of herring gulls collected from the Laurentian Great Lakes. However, data on potential toxicological and molecular responses to exposure are lacking, especially for avian species. A combined in vitro/in ovo approach was used to determine concentration-dependent effects of DP in chicken embryonic hepatocytes (CEH) and chicken embryos following injection of DP into the air cell of eggs prior to incubation. Overt toxicity (i.e. cytotoxicity and pipping success) and mRNA expression levels of transcripts previously determined to be responsive to a brominated flame retardant were assessed in CEH and hepatic tissue. DP was not cytotoxic up to a maximum concentration of 3 μM in CEH, and no effects on pipping success were observed up to the highest nominal dose group of 500 ng/g egg. A significant shift in isomeric content of syn- and anti-DP was detected between stock solutions of the commercial mixture and hepatic tissue; the proportion of the syn-DP isomer increased from 0.34 to 0.65 with a concomitant decrease of anti-DP from 0.66 to 0.35. None of the mRNA transcripts changed as a result of in vitro or in ovo exposure to DP indicating that, although there was concordance between the two approaches, DP may evoke its toxicity through other modes of action. At current environmental exposure levels, no adverse effects of DP on embryonic viability or pathways associated with the genes assessed are predicted.


Environmental Toxicology and Chemistry | 2014

Time‐dependent effects of the flame retardant tris(1,3‐dichloro‐2‐propyl) phosphate (TDCPP) on mRNA expression, in vitro and in ovo, reveal optimal sampling times for rapidly metabolized compounds

Amani Farhat; Doug Crump; Emily Porter; Suzanne Chiu; Robert J. Letcher; Guanyong Su; Sean W. Kennedy

The flame retardant, tris(1,3-dichloro-2-propyl) phosphate (TDCPP), was previously shown to affect chicken embryo growth, gallbladder size, and lipid homeostasis. A microarray study, however, revealed only modest transcriptional alterations in liver tissue of pipping embryos (days 20-21), which was attributed to the rapid metabolism of TDCPP throughout incubation. To identify the most appropriate sampling time for rapidly metabolized compounds, the present study assessed the time-dependent effects of TDCPP on 27 genes, in ovo (50 µg [116 nmol] TDCPP/g egg) and in vitro (10 µM), using a chicken ToxChip polymerase chain reaction array. The greatest magnitude in dysregulation (up to 362-fold) occurred on day 8 of incubation (in ovo) with alterations of genes involved in phase I, II, and III metabolism, among others. Gallbladder hypotrophy was observed by embryonic day 12, corroborating the finding in pipping embryos from our previous study. From days 12 to 19, genes involved in lipid homeostasis, steroid hormone metabolism, and oxidative stress were affected. In chicken embryonic hepatoctyes (CEHs), TDCPP was completely metabolized to bis(1,3-dichloro-2-propyl) phosphate (BDCPP) within 36 h, but transcriptional changes remained significant up to 36 h. These changes were not attributed to BDCPP exposure as it only altered 1 gene (CYP1A4). An 18-h exposure in CEHs altered the greatest number of genes, making it an appropriate time point for high-throughput chemical screening; however, depending on the biological pathways of interest, shorter or longer incubation times may be more informative. Overall, TDCPP elicits the transcriptional and phenotypic alterations observed in vitro and in ovo, whereas its major metabolite, BDCPP, is far less biologically active.


Toxicological Sciences | 2011

Effects of Perfluoroalkyl Compounds on mRNA Expression Levels of Thyroid Hormone-Responsive Genes in Primary Cultures of Avian Neuronal Cells

Viengtha Vongphachan; Cristina G. Cassone; Dongmei Wu; Suzanne Chiu; Doug Crump; Sean W. Kennedy

There is growing interest in assessing the neurotoxic and endocrine disrupting potential of perfluoroalkyl compounds (PFCs). Several studies have reported in vitro and in vivo effects related to neuronal development, neural cell differentiation, prenatal and postnatal development and behavior. PFC exposure altered hormone levels and the expression of hormone-responsive genes in mammalian and aquatic species. This study is the first to assess the effects of PFCs on messenger RNA (mRNA) expression in primary cultures of neuronal cells in two avian species: the domestic chicken (Gallus domesticus) and herring gull (Larus argentatus). The following thyroid hormone (TH)–responsive genes were examined using real-time reverse transcription-PCR: type II iodothyronine 5′-deiodinase (D2), D3, transthyretin (TTR), neurogranin (RC3), octamer motif–binding factor (Oct-1), and myelin basic protein. Several PFCs altered the mRNA expression levels of genes associated with the TH pathway in avian neuronal cells. Short-chained PFCs (less than eight carbons) altered the expression of TH-responsive genes (D2, D3, TTR, and RC3) in chicken embryonic neuronal cells to a greater extent than long-chained PFCs (more than or equal to eight carbons). Variable transcriptional changes were observed in herring gull embryonic neuronal cells exposed to short-chained PFCs; mRNA levels of Oct-1 and RC3 were upregulated. This is the first study to report that PFC exposure alters mRNA expression in primary cultures of avian neuronal cells and may provide insight into the possible mechanisms of action of PFCs in the avian brain.


Toxicology in Vitro | 2008

Detection of PBDE effects on mRNA expression in chicken (Gallus domesticus) neuronal cells using real-time RT-PCR and a new differential display method.

Doug Crump; Magdalena M. Jagla; Suzanne Chiu; Sean W. Kennedy

Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in a wide range of consumer products. Previous studies have suggested that PBDEs can disrupt thyroid hormone homeostasis and the developing central nervous system in rodents, but few studies have determined whether PBDEs cause similar effects in birds. An in vitro method was used to determine effects of a commercial PBDE flame retardant (DE-71) on mRNA expression in primary chicken neuronal cells derived from the cerebral hemisphere. Real-time RT-PCR assays were developed to quantify changes in mRNA abundance of genes associated with the thyroid hormone pathway; thyroid hormone receptors (TRalpha and TRbeta) and transthyretin (TTR). We also used a new differential display PCR methodology, fluorescent RNA arbitrarily primed PCR (FRAP-PCR), to determine additional effects of DE-71 on mRNA expression. Neither of the TRs responded to DE-71 exposure, but TTR mRNA decreased approximately 2-fold following exposure to 0.1, 1 and 3 microM DE-71. Candidate transcripts associated with signal transduction, neurosteroidogenesis, and neurite and axonal growth were up-regulated by DE-71 exposure. Taken together, the findings from this study indicate that this in vitro cell culture method can be used to characterize the effects of PBDEs in the avian brain.


Environmental Toxicology and Chemistry | 2016

Bisphenol S alters embryonic viability, development, gallbladder size, and messenger RNA expression in chicken embryos exposed via egg injection

Doug Crump; Suzanne Chiu; Kim L. Williams

Amid concerns about the toxicological effects and environmental prevalence of bisphenol A (BPA), efforts to find suitable, safer replacement alternatives are essential. Bisphenol S (BPS) is a potential chemical substitute for BPA; however, few studies are available confirming that it has a more desirable ecotoxicological profile. In the present study, BPS was injected into the air cell of unincubated, fertilized chicken embryos at 6 concentrations ranging from 0 μg/g to 207 μg/g egg to determine effects on pipping success, development, hepatic messenger ribonucleic acid (mRNA) expression, thyroid hormone levels, and circulating bile acid concentrations. Concentrations of BPS increased in a dose-dependent manner in whole-embryo homogenates, and exposure to the highest dose, 207 μg/g, resulted in decreased pipping success (estimated median lethal dose  = 279 μg/g; 95% confidence interval = 161-486 μg/g). Exposure to BPS also reduced growth metrics including embryo mass and tarsus length, whereas the most pronounced phenotypic effect was the concentration-dependent, significant increase in gallbladder size at concentrations ≥52.8 μg/g. These adverse phenotypic outcomes were associated with the modulation of gene targets from a chicken ToxChip polymerase chain reaction array, which are involved with xenobiotic metabolism, lipid homeostasis, bile acid synthesis, and the thyroid hormone pathway. Expression levels of 2 estrogen-responsive genes, apolipoprotein II and vitellogenin, were too low at the sampling time point assessed (i.e., pipping embryos) to quantify changes, and no effects were observed on circulating free thyroxine or bile acid concentrations. The present study provides novel, whole-animal toxicological data for a BPA replacement alternative that is not well characterized. Environ Toxicol Chem 2016;35:1541-1549.


Environmental Science & Technology | 2015

Biochemical and Transcriptomic Effects of Herring Gull Egg Extracts from Variably Contaminated Colonies of the Laurentian Great Lakes in Chicken Hepatocytes.

Doug Crump; Kim L. Williams; Suzanne Chiu; Robert J. Letcher; Luke Periard; Sean W. Kennedy

Determining the effects of complex mixtures of environmental contaminants poses many challenges within the field of ecotoxicology. In this study, graded concentrations of herring gull egg extracts, collected from five Great Lakes breeding colonies with variable burdens of organohalogen contaminants (OHCs), were administered to chicken embryonic hepatocytes to determine effects on 7-ethoxyresorufin-O-deethylase (EROD) activity, porphyrin accumulation, and mRNA expression. EROD activity and porphyrin accumulation permitted the ranking of colonies based on the efficacy of eliciting an aryl hydrocarbon receptor-mediated response. An avian ToxChip polymerase chain reaction (PCR) array provided more exhaustive coverage in terms of potential toxicity pathways being affected, including xenobiotic and lipid metabolism and the thyroid hormone pathway. Herring gull eggs from Channel Shelter Island (CHSH, Lake Huron) and Gull Island (GULL, Lake Michigan) had among the highest OHC burdens, and extracts elicited a biochemical and transcriptomic response greater than that of extracts from the other three, less polluted colonies. For example, EROD EC50 values and porphyrin ECthreshold values were lower for CHSH and GULL extracts than for the other colonies. Extracts from CHSH and GULL altered 15 and 13 of 27 genes on the PCR array compared to no more than eight genes for the less contaminated sites. The combination of a well-established avian in vitro assay, two well-characterized biochemical assays, and the avian ToxChip PCR array permitted the geographical discrimination of variably contaminated herring gull eggs from the Great Lakes. Such high-throughput assays show potential promise as cost-effective tools for determining toxic potencies of complex mixtures in the environment.

Collaboration


Dive into the Suzanne Chiu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge