Suzanne Hollins
Australian Nuclear Science and Technology Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suzanne Hollins.
Rapid Communications in Mass Spectrometry | 2010
Debashish Mazumder; Jordan Iles; Jeffrey J. Kelleway; Tsuyoshi Kobayashi; Lisa Knowles; Neil Saintilan; Suzanne Hollins
Stable isotope techniques in food web studies often focus on organic carbon in food sources which are subsequently assimilated in the tissue of consumer organisms through diet. The presence of non-dietary carbonates in bulk samples can affect their δ(13)C values, altering how their results are interpreted. Acidification of samples is a common practice to eliminate any inorganic carbon present prior to analysis. We examined the effects of pre-analysis acidification on two size fractions of sediment organic matter (SOM) from marine and freshwater wetlands and pure muscle tissue of a common freshwater invertebrate (Cherax destructor). The elemental content and isotopic ratios of carbon and nitrogen were compared between paired samples of acidified and control treatments. Our results showed that acidification does not affect the elemental or isotopic values of freshwater SOM. In the marine environment acidification depleted the δ(13)C and δ(15)N values of the fine fraction of saltmarsh and δ(15)N values of mangrove fine SOM. Whilst acidification did not change the elemental content of invertebrate muscle tissue, the δ(13)C and δ(15)N values were affected. We recommend to researchers considering using acidification techniques on material prepared for stable isotope analysis that a formal assessment of the effect of acidification on their particular sample type should be undertaken. Further detailed investigation to understand the impact of acidification on elemental and isotopic values of organic matter and muscular tissues is required.
Australian Journal of Earth Sciences | 2014
Dioni I. Cendón; Stuart Hankin; J. P. Williams; M. Van der Ley; M. Peterson; C.E. Hughes; Karina T. Meredith; Ian Graham; Suzanne Hollins; V. Levchenko; Robert Chisari
Groundwater residence time in the Kulnura–Mangrove Mountain aquifer was assessed during a multi-year sampling programme using general hydrogeochemistry and isotopic tracers (H2O stable isotopes, δ13CDIC, 3H, 14C and 87Sr/86Sr). The study included whole-rock analysis from samples recovered during well construction at four sites to better characterise water–rock interactions. Based on hydrogeochemistry, isotopic tracers and mineral phase distribution from whole-rock XRD analysis, two main groundwater zones were differentiated (shallow and deep). The shallow zone contains oxidising Na–Cl-type waters, low pH, low SC and containing 3H and 14C activities consistent with modern groundwater and bomb pulse signatures (up to 116.9 pMC). In this shallow zone, the original Hawkesbury Sandstone has been deeply weathered, enhancing its storage capacity down to ∼50 m below ground surface in most areas and ∼90 m in the Peats Ridge area. The deeper groundwater zone was also relatively oxidised with a tendency towards Ca–HCO3-type waters, although with higher pH and SC, and no 3H and low 14C activities consistent with corrected residence times ranging from 11.8 to 0.9 ka BP. The original sandstone was found to be less weathered with depth, favouring the dissolution of dispersed carbonates and the transition from a semi-porous groundwater media flow in the shallow zone to fracture flow at depth, with both chemical and physical processes impacting on groundwater mean residence times. Detailed temporal and spatial sampling of groundwater revealed important inter-annual variations driven by groundwater extraction showing a progressive influx of modern groundwater found at >100 m in the Peats Ridge area. The progressive modernisation has exposed deeper parts of the aquifer to increased NO3− concentrations and evaporated irrigation waters. The change in chemistry of the groundwater, particularly the lowering of groundwater pH, has accelerated the dissolution of mineral phases that would generally be inactive within this sandstone aquifer triggering the mobilisation of elements such as aluminium in the aqueous phase.
Isotopes in Environmental and Health Studies | 2008
John J. Gibson; Mostafa A. Sadek; D.J.M. Stone; Catherine E. Hughes; Stuart Hankin; Dioni I. Cendón; Suzanne Hollins
Abstract Deuterium and oxygen-18 enrichment in river water during its transit across dryland region is found to occur systematically along evaporation lines with slopes of close to 4 in 2H–18O space, largely consistent with trends predicted by the Craig–Gordon model for an open-water dominated evaporating system. This, in combination with reach balance assessments and derived runoff ratios, strongly suggests that the enrichment signal and its variability in the Barwon–Darling river, Southeastern Australia is acquired during the process of evaporation from the river channel itself, as enhanced by the presence of abundant weirs, dams and other storages, rather than reflecting inherited enrichment signals from soil water evaporation in the watershed. Using a steady-state isotope mass balance analysis based on monthly 18O and 2H, we use the isotopic evolution of river water to re-construct a perspective of net exchange between the river and its contributing area along eight reaches of the river during a drought period from July 2002 to December 2003, including the duration of a minor flow event. The resulting scenario, which uses a combination of climatological averages and available real-time meteorological data, should be viewed as a preliminary test of the application rather than as a definitive inventory of reach water balance. As expected for a flood-driven dryland system, considerable temporal variability in exchange is predicted. While requiring additional real-time isotopic data for operational use, the method demonstrates potential as a non-invasive tool for detecting and quantifying water diversions, one that can be easily incorporated within existing water quality monitoring activities.
Hydrological Processes | 2017
Jagoda Crawford; Suzanne Hollins; Karina T. Meredith; Catherine E. Hughes
Cop Abstract: The stable isotopic (H/H and O/O) composition of precipitation has been used for a variety of hydrological and paleoclimate studies, a starting point for which is the behaviour of stable isotopes in modern precipitation. To this end, daily precipitation samples were collected over a 7-year period (2008–2014) at a semi-arid site located at the Macquarie Marshes, New South Wales (Australia). The samples were analysed for stable isotope composition, and factors affecting the isotopic variability were investigated. The best correlation between δO of precipitation was with local surface relative humidity. The reduced major axis precipitation weighted local meteoric water line was δH= 7.20 δO + 9.1. The lower slope and intercept (when compared with the Global Meteoric Water Line) are typical for a warm dry climate, where subcloud evaporation of raindrops is experienced. A previously published model to estimate the degree of subcloud evaporation and the subsequent isotopic modification of raindrops was enhanced to include the vertical temperature and humidity profile. The modelled results for raindrops of 1.0mm radius showed that on average, the measured D-excess (=δH 8 δO) was 19.8‰ lower than that at the base of the cloud, and 18% of the moisture was evaporated before ground level (smaller effects were modelled for larger raindrops). After estimating the isotopic signature at the base of the cloud, a number of data points still plotted below the global meteoric water line, suggesting that some of the moisture was sourced from previously evaporated water. Back trajectory analysis estimated that 38% of the moisture was sourced over land. Precipitation samples for which a larger proportion of the moisture was sourced over land were O and H-enriched in comparison to samples for which the majority of the moisture was sourced over the ocean. The most common weather systems resulting in precipitation were inland trough systems; however, only East Coast Lows contributed to a significant difference in the isotopic values. Copyright
Human and Ecological Risk Assessment | 2008
J. Twining; N. Creighton; Suzanne Hollins; Ron Szymczak
ABSTRACT Sediment metal concentrations in embayments of Sydney Harbour, acquired from the literature and from samples collected for this study, were used to generate contaminant probability density distributions using AQUARISK. The sediment metal concentrations often exceeded Australias interim sediment quality guidelines. Similarly, estuarine spiked sediment toxicity test literature provided adverse biotic effects concentration data to generate species sensitivity distributions using AQUARISK. Although the harbor is subject to other inorganic and organic contamination, we have used sediment metals to demonstrate an approach for ecological risk mapping and environmental management prioritization. Sufficient spiked sediment toxicity test data were found for only three metals—Cd, Cu, and Zn—and some tests were likely to overestimate toxicity. The estimates of the hazardous concentration to 5% of species (the 50th percentile of the 95% species protection level) were 5, 12, and 40 mg/kg DW of total sediment metal for Cd, Cu, and Zn, respectively. These values were generally low when compared with the interim sediment quality guidelines due to the overestimation of toxic effects in the literature data. The parameters for the species sensitivity distributions have been combined with the measured sediment metal concentrations in Homebush Bay to generate risk maps of the estimated species impact for each metal as well as for all three metals collectively assuming proportional additivity. This has demonstrated the utility of comparing contaminants on a consistent scale—ecological risk.
Applied Radiation and Isotopes | 2003
Peter Airey; C.E. Hughes; Thomas Kluss; Emerenciana Duran; Brett Miller; Siripone Chiuenta; Alexander F. Nielsen; Suzanne Hollins
Abstract Recent advances in the off-shore radiotracing program in the Asia Pacific region are described with examples from the Philippines, Thailand, Hong Kong and Australia. Advances are driven by changing requirements from the user community which include: (1) the need to experimentally evaluate the output of numerical models underpinning engineering and environmental investigations; (2) the need to address increasingly sophisticated questions posed by researchers into coastal ecosystems; and (3) the need to respond to pressures from regulators to minimise the level of tracer released to the environment. Four stages in the recent evolution of tracer technology are identified.
Marine Pollution Bulletin | 2015
Debashish Mazumder; Neil Saintilan; Brendan Alderson; Suzanne Hollins
Urban development in coastal settings has increased the input of nitrogen into estuaries globally, in many cases changing the composition of estuarine ecosystems. By focussing on three adjacent estuaries with a gradient of anthropogenic N loadings, we used stable isotopes of N and C to test for changes due to increased anthropogenic N input on the structure of some key trophic linkages in estuaries. We found a consistent enrichment in δ(15)N corresponding to increased anthropogenic N at the three ecosystem levels studied: fine benthic organic matter, grazing invertebrate, and planktivorous fish. The degree of enrichment in δ(15)N between fine benthic organic matter and the grapsid crab Parasesarma erythrodactyla was identical across the three sites. The glassfish Ambassis jacksoniensis showed lower levels of enrichment compared to basal food sources at the higher N-loaded sites, suggesting a possible effect of anthropogenic N in decreasing food-chain length in these estuaries.
Science of The Total Environment | 2018
Suzanne Hollins; Catherine E. Hughes; Jagoda Crawford; Dioni I. Cendón; Karina T. Meredith
This paper presents a continental scale interpretation of δ2H and δ18O in Australian precipitation, incorporating historical GNIP data at seven sites (1962-2002) and 8-12 years of new monthly data from 15 sites from 2003 to 2014. The more than doubling of stations and the significant time series duration allow for an improved analysis of Australian precipitation isotopes. Local meteoric water lines were developed for each site, and for the Australian continent. When the annual precipitation weighted values were used, the Australian meteoric water line was δ2H = 8.3 δ18O + 14.1‰. Precipitation amount was found to be a stronger driver of precipitation isotopes than temperature at most sites, particularly those affected by tropical cyclones and the monsoon. Latitude, elevation and distance from the coast were found to be stronger drivers of spatial variability than temperature or rainfall amount. Annual isoscapes of δ2H, δ18O and deuterium excess were developed, providing an improved tool to estimate precipitation isotope inputs to hydrological systems. Because of the complex climate, weather and oceanic moisture sources affecting Australia, regional groupings were used instead of the climate zone approach and additional data was included to improve the coverage in data poor regions. Regression equations for the isoscape were derived using latitude, altitude and distance from the coast as predictor variables. We demonstrate how this isoscape can be used as a tool for interpreting groundwater recharge processes using examples from across Queensland and New South Wales, including the Murray Darling Basin. Groundwater isotopes at sites where direct local recharge occurs are similar to rainfall, but for inland sites, which are often arid or semi-arid, a disconnect between shallow groundwater and local rainfall is observed; the departure in deuterium excess for these sites increases with aridity and distance from the headwaters where flooding originates.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2018
Ander Guinea; Suzanne Hollins; Karina T. Meredith; Stuart Hankin; Dioni I. Cendón
ABSTRACT The interaction between surface water and groundwater in clay-rich fluvial environments can be complex and is generally poorly understood. Airborne electromagnetic surveys are often used for characterizing regional groundwater systems, but they are constrained by the resolution of the method. A resistivity imaging survey has been carried out in the Macquarie Marshes (New South Wales, Australia) in combination with water chemical sampling. The results have enabled the identification of buried palaeochannels and the location of potential recharge points. The data have been compared with previously published airborne electromagnetic data in the same area. Deeper less conductive features suggest that there is a potential connection between the Great Artesian Basin and groundwater contained within the shallow sand aquifer. Even though the chemistry of the groundwater samples does not indicate interaction with the Great Artesian Basin, the observed discontinuity in the saprolite implies potential for this to happen in other locations.
Journal of Hydrology | 2014
Carol Tadros; Catherine E. Hughes; Jagoda Crawford; Suzanne Hollins; Robert Chisari